
Carey Bloodworth

Carey Bloodworth
Welcome to my home page!

In the past couple of years, I've spent a lot of time developing programs to compute insanely
large number of digits of pi. Why? Because the challenge was fun. In that time, though, I've

learned a lot about doing large scale multiplication. (By 'large', I mean a least a million digits on
up to several thousand times more than that.)

I figured it was time for me to share what I know, so that you don't have to spend as much time
learning it the hard way, like I did.

I'm giving you numerous examples of big number multiplication. I'm including FFT multiplication,
NTT (Pollard, prime radix FFT, etc.), Nussbaumer convolution, and Schonhage-Strassen

convolution.

The example programs are public domain. I do, however, ask that if you find any of them or this
site useful, please give me credit in your program, docs, web page, etc. I think that's fair, okay?

New this time is a slightly embarassing page about my stupidity in missing an obvious
modification to Schonhage to make it work in any base, not just binary.

Also, I put a short note on the download page about a bug in Jason's assembly
code for his demonstration 62 bit Montgomery multiply.

SiteMap
Pi | Multiplication | Downloads | Related Links | What's new | Contact Me | Thanks

 | To do
Continued fractions Binary Splitting

If you have comments or suggestions, feel free to send me a note. I've got a convenient
feedback form on my 'contact me' page. Plus an email address if you'd rather use your mail

program.

If you link to this site, please link to the main page at:
www.BLOODWORTH.org

(Yup, I was lucky enough to be able to register my last name.)

This site and its contents are copyrighted.
Most of the files are distributed under their own license, often public domain, so please check
 them for specifics. All code snippets directly on the page itself are public domain. All papers

are copyright their respective authors unless explicitly stated otherwise.

http://members.tripod.com/careybloodworth/index.htm (1 of 2) [8/21/2002 1:16:17 AM]

http://members.tripod.com/careybloodworth/whats_new.htm
http://members.tripod.com/careybloodworth/links.htm
http://members.tripod.com/careybloodworth/whats_new.htm
http://members.tripod.com/careybloodworth/contact_me.htm
http://members.tripod.com/careybloodworth/thanks.htm
http://members.tripod.com/careybloodworth/to_do.htm
http://members.tripod.com/careybloodworth/binsplit.htm

Carey Bloodworth

Privacy policy:
Please note that I respect your privacy as much as I like my own.

I don't care who you are. Simple as that. Although my web and domain host
probably keep records about visitors, I don't see any of that.

Site last updated September 28, 2001

visitors since May 1, 2001

http://members.tripod.com/careybloodworth/index.htm (2 of 2) [8/21/2002 1:16:17 AM]

http://member.bcentral.com/cgi-bin/fc/fastcounter-login?2471877

Pi

 Home Page

 SiteMap

 Download page

 Feedback form

Carey Bloodworth

Pi
Multiplication
Downloads
Related Links
What's new
Contact Me
Thanks
To do

Pi

To put things very simply, I haven't worked on my pi-AGM program
very much since Dominique Delande computed one billion (2^30)
decimals with my program.

I did quite a bit of work on it, but I never really finished the
improvements.

I developed a new NTT multiplication routine that was capable of
reaching to at least 256g digits.

I developed a disk based multiplication module. It wasn't tuned, but it
worked and showed a lot of promise.

I reduced the disk consumed down to just 3.75 times the number of
decimals computed. (This is less than half what the previous program
used!)

But in spite of those improvements, I never really got done. Why?

Well, because I wasn't happy with it. The code was disgusting. The
disk I/O would have been excessive. (It has always been bad, but for
these ranges it would have been even worse.)

Do you have any idea how hard it is to work on a program that you
wrote but dislike?

With my previous v2.x program, my goal was only to do 32 million
decimals on a 486/66 faster than what David Bailey did on a Cray-2
back in 1986. It turned out the program was extensible far beyond
that, but that was never really my goal.

Well, now my goal is really massive computations, and that means
things need to be done a bit differently.

Both in the structure of the program and even the method used.

I'm still working on a good solution, but so far I haven't found anything
I like. Which is why there isn't anything of importance on this page.

Now, about the old v2.3.1 program....

http://members.tripod.com/careybloodworth/pi.htm (1 of 2) [8/21/2002 1:16:31 AM]

http://members.tripod.com/careybloodworth/contact_me.htm
http://members.tripod.com/careybloodworth/links.htm
http://members.tripod.com/careybloodworth/whats_new.htm
http://members.tripod.com/careybloodworth/contact_me.htm
http://members.tripod.com/careybloodworth/thanks.htm
http://members.tripod.com/careybloodworth/to_do.htm

Pi

Well, if you've downloaded the source code and tried to compile it with
the current GNU C compiler, you'll have certainly noticed that it doesn't
compile! That's because they changed the way GNU C handles inline
assembly and the new structure and restrictions aren't completely
compatible with the old method.

If you really need to compile that old program, the let me know. I think
I have some drop in replacement modules, but right off hand I don't
know where. You shouldn't really need to compile it anyway, since it's
distributed with executables.

The last distributed version is available on the download page.

http://members.tripod.com/careybloodworth/pi.htm (2 of 2) [8/21/2002 1:16:31 AM]

Downloads

 Home Page

 SiteMap

 Download page

 Feedback form

Carey Bloodworth

Pi
Multiplication

Downloads
Related Links
What's new
Contact Me
Thanks
To do

Downloads

My multiplication demos are available here: muldemos.ZIP (July 16,
2001)

(This contains Karatsuba, complex-FFT, wrapper-FFT, right angle-
FFT, 31 bit NTT, 64 bit NTT, multi-prime 31 bit NTT, FGT, FHT (4
styles), nussbaumer, a 'balanced data' fft, Montgomery NTT31,
Montgomery NTT62, wide NTT, and Schonhage-Strassen.)

Jason's public domain Pentium optimized FPU modmul is here:
ntt586.zip

Jason's x86 62 bit MontMul code is here: Mont62.txt
(WARNING: The version I have posted here has an error of some
sort in it. Jason hasn't sent me a new version, so you'll need to
contact him yourself. Jason Stratos Papadopoulos jasonp -at-
Glue.umd.edu)
An simple example of binary splitting (using GNU GMP) is here.
BinSplit.ZIP This also includes my "pretend" code that allows me to
count operation cost without actually doing the computation.

Here is the example code for working with continued fractions.
gosper.c (Uses GNU GMP)

Richard Crandall's 3*2^k convolution is here: Con32k.ps

Richard Crandall's FGT paper is here: Confgt.ps

Dr. David Bailey's non-power of two convolution is here: Convops.ps

Colin Percival's paper on FFT error rates is here: mpaper.ps

A copy of Jorg Arndt's FFT paper is here: fxtbook.ps (Feb 19,2001)

An old newsgroup posting on montgomery multiplication: Montmul.txt

A paper by Cetin Koc, Tolga Acar and Burton Kalisi Jr on Montgomery
Multiplication. j37acmon.pdf

A simple program to find NTT primes: findprim.c

http://members.tripod.com/careybloodworth/downloads.htm (1 of 2) [8/21/2002 1:16:54 AM]

http://members.tripod.com/careybloodworth/contact_me.htm
http://members.tripod.com/careybloodworth/links.htm
http://members.tripod.com/careybloodworth/whats_new.htm
http://members.tripod.com/careybloodworth/contact_me.htm
http://members.tripod.com/careybloodworth/thanks.htm
http://members.tripod.com/careybloodworth/to_do.htm
http://members.tripod.com/careybloodworth/HTMLobj-183/muldemos.ZIP
http://members.tripod.com/careybloodworth/HTMLobj-134/ntt586.zip
http://members.tripod.com/careybloodworth/HTMLobj-180/Mont62.txt
http://members.tripod.com/careybloodworth/HTMLobj-181/BinSplit.ZIP
http://members.tripod.com/careybloodworth/HTMLobj-182/gosper.c
http://members.tripod.com/careybloodworth/HTMLobj-135/Con32k.ps
http://members.tripod.com/careybloodworth/HTMLobj-136/Confgt.ps
http://members.tripod.com/careybloodworth/HTMLobj-137/Convops.ps
http://members.tripod.com/careybloodworth/HTMLobj-174/mpaper.ps
http://members.tripod.com/careybloodworth/HTMLobj-175/fxtbook.ps
http://members.tripod.com/careybloodworth/HTMLobj-138/Montmul.txt
http://members.tripod.com/careybloodworth/HTMLobj-164/j37acmon.pdf
http://members.tripod.com/careybloodworth/HTMLobj-139/findprim.c

Downloads

A simple program to find NTT roots: findroot.c

Mikko Tommila's 64 bit special prime ModMul: Raw.h

My old v2.3.1 pi program source is here: Cbpi231s.zip

My old v2.3.1 pi program executables are here: Cbpi231b.zip

My public domain (and crude!) pi program is here: piagm15.zip

My old public domain pi tutorial is here: Pitutor.zip

My old public domain pi reference is here: Pi_ref.txt

Felix Bileski has converted the pi_ref file to .PDF format. pirefpdf.zip
(The .pdf file is passworded to prevent tampering. If you use
GhostScript / GhostView to read PDF (rather than Adobe's reader),
you'll need the decrytption module. pdf_sec.ps Put this module into
your Ghostscript directory, replacing the existing non-working 'stub'
version.)

An old paper on continued fractions. Cf6.txt

http://members.tripod.com/careybloodworth/downloads.htm (2 of 2) [8/21/2002 1:16:54 AM]

http://members.tripod.com/careybloodworth/HTMLobj-140/findroot.c
http://members.tripod.com/careybloodworth/HTMLobj-141/Raw.h
http://members.tripod.com/careybloodworth/HTMLobj-142/Cbpi231s.zip
http://members.tripod.com/careybloodworth/HTMLobj-143/Cbpi231b.zip
http://members.tripod.com/careybloodworth/HTMLobj-144/piagm15.zip
http://members.tripod.com/careybloodworth/HTMLobj-145/Pitutor.zip
http://members.tripod.com/careybloodworth/HTMLobj-146/Pi_ref.txt
http://members.tripod.com/careybloodworth/HTMLobj-178/pirefpdf.zip
http://members.tripod.com/careybloodworth/HTMLobj-179/pdf_sec.ps
http://members.tripod.com/careybloodworth/HTMLobj-177/Cf6.txt

Continued fractions

 Home
Page

 SiteMap

 Download
page

 Feedback
form

Continued fractions

(A plain text version of this page and some example code is available on the download
page.)

This document is titled: cf6.txt

It was written by Carey Bloodworth and placed into the public domain on July 19, 1996

It was based almost entirely on an unfinished continued fraction paper written by Robert
William ("Bill") Gosper. Although his techniques work, the examples he gave were a bit
on the complex side, often obscuring how to even do the basic operation. I started writing
this etext mostly as a means to understand what he was trying to say.

Why use Continued Fractions?
============================

I suppose you wouldn't be satisfied with "Because they are there"?

Well, it's generally accepted that patterns are easier to detect in a continued fraction than
in some arbitrary positional notation base, such as our base 10.

For example, consider:

sqrt(2) is 1 (2)

'e' is 2 1 2 1 1 4 1 1 6 1 1 8 1..., which can be written as
 2 (1 2k+2 1) and
 1 0 1 (1 2k+2 1) and
 (1 2k 1)

4/e is 1 2 8 3 (1 1 1 k+1 7 1 k+1 2) and
 1 2 (1 k 7 1 k 2 1 1)

sqrt(3) is 1 (1 2)

sqrt(23) is 4 (1 3 1 8)

sqrt(19) is 4 (2 1 3 1 2 8)

sqrt(199) is 14 (9 2 1 2 2 5 4 1 1 13 1 1 4 5 2 2 1 2 9 28)

(The numbers in the parenthesis repeat for ever. When there is a variable in there, that
would be the repetition number.)

All of those have a fairly obvious pattern, where as their numerical evaluation, in base 10,

http://members.tripod.com/careybloodworth/contfrac.htm (1 of 25) [8/21/2002 1:17:28 AM]

http://members.tripod.com/careybloodworth/contact_me.htm
http://members.tripod.com/careybloodworth/contact_me.htm

Continued fractions

doesn't.

Our base 10 is a base oriented positional notation. Continued fractions are a base
independant syntax. If you calculated 5/3 in base 8, base 10, and base 11, you'd get
three very different looking results. But with a CF, you can only get one single result, 1 1
2.

If you divided 100/2.54, the CF would be 39 2 1 2 2 1 4, exactly. But the numerical
evaluation of it in base 10 would be:

39.(370078740157480314960629921259842519685039), with the number in the
parenthesis repeating for ever.

If you take two 30 digit numbers and divide them, it's likely that the output would appear
to be quite random in base 10. But with CF's, it should be fairly obvious. For example,
using the GNU BC arbitrary precision calculator, and the first 30 digits of 'e' and 'pi', I get:

--
a=271828182845904523536028747135
b=314159265358979323846264338327
scale=1000
a/b
.86525597943226508721777478964785939799206907743106713864025003113467\
477152915150092186147965484639523315325989495951554017931516419695660\
635894519433559763502699680251523583148721861239672635183600596794156\
640532945796196968668311945693959980135926667917887436307322985930931\
257156756874997180304955295356581374376673772545272251729498023995248\
077291023275512260341767923150203012807283276473738827575745441302022\
321547215330806334139789837201115950214212094129259559596404253921544\
428367036754039564167801309097386149177751437179132333658960241206397\
678616733708815052470295518367995641129127406784165928700251306376190\
960196936273328495566886224526371225698761226034437624690691390652479\
651068775001244603621352180461094925302932972004089572428080102851449\
761762482618233323356854444471227809174709162670077391294767882226045\
060458113815488386585461229894417117418633670265102140214154479743806\
354005660672512059719024607909281529473076026540779807602890846503427\
73279546541182871285734704074935024
--

But when I convert it to a continued fraction, I get an exact answer: 0 1 6 2 2 1 2 6 8 2 1
1 1 4 3 1 1 66 2 1 1 2 4 2 7 46 10 2 1 7 1 27 3 9 2 1 5 1 2 5 1 1 2 10 1 2 2 1 7 2 9 2 1 35
1 2 23. A rational number always generates a finite continued fraction sequence. The
same can't be said about any base notation.

Incidentally, those 1,000 digits are fairly random, and would probably pass most random
number tests.

So, if CF's are so great, why don't we always use them instead of regular positional base
10? Because they take more work, are more complicated and the numbers in the internal
calculations can get much larger than is convenient for hand calculations. And you've still
got to know regular numbers and math to be able to work the numbers during the

http://members.tripod.com/careybloodworth/contfrac.htm (2 of 25) [8/21/2002 1:17:28 AM]

Continued fractions

calculation of a CF.

But, for all that work and effort, you do get exact results. As Bill Gosper put it
"...continued fractions are not only perfectly amenable to arithmetic, they are amenable to
perfect arithmetic."

What is a continued fraction?
=============================

There are four kinds of continued fractions. Infinite, where the terms just go on for ever,
and finite continued fraction, where there are only a fixed number of terms. And those
two can be of one of two types, regular (sometimes called simple), and irregular
(sometimes called complex). The regular type always has a one in the numerator. The
irregular type can have other whole numbers there.

I'm sure you can imagine the difference between infinite and finite continued fractions, so
I'll only show the difference between regular and irregular.

Regular infinite continued fraction:

sqrt(2) = 1 + 1

 2 + 1

 2 + 1

 2 +

Irregular infinite continued fraction:

 4
-- = 1 + 1²
pi ------
 3 + 2²

 5 + 3²

 7 +

Regular CF's are often written as only the denominators, since the numerators are always
one and there isn't any point in writing them down. We would write the square root of
two's CF as: 1 2 2 2 2..., or as 1 (2), where the number(s) in the parenthesis repeat
forever.

I don't know how irregular CFs are written. I suppose about any way would do, as long as

http://members.tripod.com/careybloodworth/contfrac.htm (3 of 25) [8/21/2002 1:17:28 AM]

Continued fractions

there was no chance of misunderstanding. For the purpose of this paper, I'll do it with a
colon ":" between each pair of numbers. The irregular CF 4/pi formula above would be: 1
1:3 4:5 9:7...

Conversion of a rational number into a regular continued fraction
==

Converting a rational number into a regular CF is actually fairly simple. For example, say
we have 2.54 and we would like to make a CF out of it. The first thing we do is get rid of
the decimal point and make it into a rational number. The number would then become
254 / 100, which is obviously the same thing, just in a different form. It doesn't matter
whether it is in lowest terms or not.

We then perform Euclid's Greatest Common Divisor algorithm on it:

254
100 2 254/100 = 2, with a remainder of 54
 54 1 100/54 = 1, with a remainder of 46
 46 1 54/46 = 1, with a remainder of 8
 8 5 46/8 = 5, with a remainder of 6
 6 1 8/6 = 1, with a remainder of 2
 2 3 6/2 = 3, with no remainder
 0

We have now discovered that the finite regular CF is: 2 1 1 5 1 3. And also that the GCD
of our 254/100 is 2, since that was the last divisor.

Conversion of a regular continued fraction into a rational number
===

You could start at the end of the finite CF and keep building up the rational number. But,
if you are dealing with a CF that is infinite or is simply coming in a term at a time and you
can't wait for the end, then you can start at the beginning.

This is a little bit more difficult, but it can be done with a bit of thinking. For this example,
I'll use the RCF for 2.54 above.

We take the first number and we then add the next term to it, remembering that we are
actually working with fractions, rather than whole numbers. We also need to remember
that the CF is a regular CF, which means that the numerators are going to be one.

2 1 2*1+0 3
- + - = ----- = -
1 1 1*1+0 1

http://members.tripod.com/careybloodworth/contfrac.htm (4 of 25) [8/21/2002 1:17:28 AM]

Continued fractions

I know that looks odd, but please be patient, and you'll understand where the numbers
are comming from, especially that "+0".

3 1 3*1+2 5
- + - = ----- = -
1 1 1*1+1 2

5 1 5*5+3 28
- + - = ----- = --
2 5 2*5+1 11

28 1 28*1+5 33
-- + - = ------ = --
11 1 11*1+2 13

33 1 33*3+28 127
-- + - = ------- = ---
13 3 13*3+11 50

And we have our answer! 127/50. Hmmmm... That doesn't look like the 254/100 that we
started with... Well, it isn't. Remember, we originally had 2.54 and forced it into the
rational form of 254/100. It wasn't in lowest terms, because it has a GCD of two, and
could have been reduced down to 127/50. I should also point out that even though this
example CF resulted in a rational of lowest terms, there is no requirment in the CF math
that forces this. This was just pure luck. As you can see from some of the worked
examples below, for an irregular CF, it probably wont be in lowest terms.

Anyway, to explain the method, we take our current rational estimate, we multiply it by the
next term of the regular CF, and then add the previous rational number we had. We don't
use the numerator of the terms of the regular CF. They are always one and don't add
anything, because multiplying by '1' doesn't change anything. They can be put there, but
that's just one more thing to do. They do get used with irregular CFs though. In those
cases, we would multiply our previous term by it.

Notational changes
==================

We really need a more convenient way of writing all this stuff. We need some way of
'automating' all this syntax. I'm not really sure any way is really good, but we need to pick
something, so I'm going to follow the lead of how I learned it.

From now on, we are going to be working in the 'equation form' of

http://members.tripod.com/careybloodworth/contfrac.htm (5 of 25) [8/21/2002 1:17:28 AM]

Continued fractions

 aX + b

 cX + d

where, the 'X' means the continued fraction that we are working with. Using this sytax
allows us to do a few tricks, like adding, subtracting, multiplying or dividing the CF by a
fixed amount. We can even reciprocate the CF. Doing it this way gives us a great deal of
versitility.

Instead of actually writing the 'X' all the time, we are going to abreviate it a bit further, as a
2x2 matrix of just:

 a b
 c d

and you'll just have to remember what we are talking about. When working with the CF's
there are a few usful matrices that you should remember.

A) 1 0 B) 0 1 C) 2 0 D) 1 0
 0 1 1 0 0 1 0 2

The first is just the 'identity' matrix. If you plug the numbers into the formula above, you'll
see it's just (1X+0)/(0X+1). The next one is the reciprocal form. You can see it's just
(0X+1)/(1X+0). Example C is two times the identity. Example D is one half of the
identity.

(Just to confuse things a bit more, actually, only the very first 2x2 matrix we use will fit
that equation. The rest are better thought of as composed of two terms, the new, better
approximation, and the old, not as good approximation. You'll understand when you see
the examples.)

Conversion of a regular Continued Fraction into a rational number
===

Now, let's again work with that conversion of the 2 1 1 5 1 3 CF, which you should
remember, is equivalent to 2.54.

We are going to write our incomming CF along the top, in backwards right to left format.
 The first term will start all the way over to the right, with the next term over to the left, and
so on. This does take a bit of getting used to, but unfortunately, it does make some
things a bit easier to deal with.

 3 1 5 1 1 2

We also need to have a matrix to start with. Something to 'prime the pump', so we can
have a place to start. Sine we aren't wanting to do anything fancy, except just convert it

http://members.tripod.com/careybloodworth/contfrac.htm (6 of 25) [8/21/2002 1:17:28 AM]

Continued fractions

to another form, we want to use the 'identity' matrix of 1;0;0;1. We write that so the left
part of it is under the first CF term.

CF 3 1 5 1 1 2

 1 0
 0 1

We then take "A" times the CF, plus the previous term, which is "B". We then take "C"
times the CF, plus the previous term, which is "D".

CF 3 1 5 1 1 2

 2 1 0
 1 0 1

Notice that we have a new little matrix to work with now. 2;1;1;0. We keep repeating the
operations.

CF 3 1 5 1 1 2

 127 33 28 5 3 2 1 0
 50 13 11 2 1 1 0 1

As you can see, that's the same result we got before, but it looks so much neater. Except
for having to work from right to left. I suppose we could do it left to right, and reverse our
matrix and so on, but this is the way I learned it and my one reference shows it this way,
and I'm having enough trouble keeping everything straight while I write this stuff down.
 Later I may try to go from left to right and end up rewriting all of this, in which case, you'll
never know about all of this.... <BG>

You can also see that each new term is a better and better approximation to our original
number, until finally we reach the last term of the finite CF and we have all the
'information' and we are able to reconstruct the original number exactly. This is what I
meant when I previosly said that except for the initial matrix, it was better to think of it as
new and old approximations. You can also see that each appriximation goes back and
forth between being too high, and being too low.

Conversion of an irregular Continued Fraction into a rational number
==

Alright, so we've now come up with a general way of converting a regular CF into a
rational number. We can also do the same with an irregular CF. In this case, we write
the numerators and denominators of it on the top, one above the other, and when we do
our math to generate a new rational number, we multiply the old number by the
numerator of the CF. For example, I'll use the continued fraction for pi given at the
beginning.

http://members.tripod.com/careybloodworth/contfrac.htm (7 of 25) [8/21/2002 1:17:28 AM]

Continued fractions

First we need to write down the terms:

 ...100 81 64 49 36 25 16 9 4 1
 19 17 15 13 11 9 7 5 3 1

Next we need to chose our starting matrix. Well, that depends on what you want. If you
want the rational number for 4/pi, then you could use the identity function 1;0;0;1. Frankly
though, I'd rather end up with normal, regular, pi ratios. Ratios like 22/7, 333/103, and
355/113. For that, we need to remember the 'formula' that our initial matrix represents.
 We need the reciprocal of all this, so our 'pi' factor will be on the bottom. And that '4'
needs to be on the top, so that pi can divide into it. So, our matrix is 0;4;1;0.

 ...100 81 64 49 36 25 16 9 4 1 (1)
 19 17 15 13 11 9 7 5 3 1
--
 0 4
 1 0

So, to get our next set of numbers, we multiply "A" times the denominator right above,
then add "B" times the numerator right above it. (This requires setting a fake '1' as a
numerator above the '4' in the initial matrix. I'm not quite sure how to get around this. It
doesn't seem like 'clean' mathematics. I guess you could think of it as being the '1'
numerator over the initial '1'.) We then do "C" and "D" the same way.

 ...100 81 64 49 36 25 16 9 4 1 (1)
 19 17 15 13 11 9 7 5 3 1
--
 6976 640 76 12 4 0 4
 2220 204 24 4 1 1 0

Now, as you can see, these numbers are starting to get a little big. What I'm going to do is
reduce them to their lowest terms. You have to do that as a group of 4, since we are
dealing with a 2x2 matrix. Basically, you just find the GCD of all four numbers. In this
case, we can divide by 4. And we end up with:

 ...100 81 64 49 36 25 16 9 4 1 (1)
 19 17 15 13 11 9 7 5 3 1
--
 6976 640 76 12 4 0 4
 2220 204 24 4 1 1 0

 1744 160
 555 51

And we continue on:

 ...100 81 64 49 36 25 16 9 4 1 (1)
 19 17 15 13 11 9 7 5 3 1
--

http://members.tripod.com/careybloodworth/contfrac.htm (8 of 25) [8/21/2002 1:17:28 AM]

Continued fractions

 6976 640 76 12 4 0 4
 2220 204 24 4 1 1 0

 6598656 364176 23184 1744 160
 2100420 115920 7380 555 51

And as you can see, the numbers you are working with constantly get larger and larger.
 Unfortunately, that is simply part of continued fractions and has to be accepted. You can
also see that the final numbers 6598656/2100420 can be reduced down to 183296/58345
and results in 3.141588825. That's not as good as 355/113's 3.14159292. We could
however, eventually reach a rational number that has at least as good of precision as
355/113.

In fact, I think I'm going to continue this example until we do.

 121 100 81 64
 21 19 17 15
--
 6598656 364176
 (reduce by 36) 2100420 115920

 2189751040 86352640 3763456 183296 10116
 697019400 27486900 1197945 58345 3220

Hmmm... Well. It looks like we've just jumped over the precision that 355/113 gives.

3763456/1197945 is 3.141593312
355/113 is 3.141592920
86352640/27486900 is 3.141592540
2189751040/697019400 is 3.141592673
pi is 3.141592653

Why is this? Why didn't we get 355/113? Well, two reasons. First, it's quite possible I
made a mistake in my math. (I didn't, but it is possible, especially when you are doing
this by hand.) The second is that 355/113 was done from the _regular_ continued
fraction, and not the irregular continued fraction. Although you get comparable precision,
the actual rational numbers you get in the process are different.

If we were to convert our irregular CF into a regular CF, and truncate that at 3 7 15 1, and
then convert that into a rational number, we would get 355/113. Just as proof, I'll show
you:

2189751040
 697019400 3
 98692840 7
 6169520 15
 6150040 1

http://members.tripod.com/careybloodworth/contfrac.htm (9 of 25) [8/21/2002 1:17:28 AM]

Continued fractions

 19480 And this is as far as we need to go.

(Notice that there is still information left that we could extract to get an even better
approximation. But we don't want that good of precision right now, so there is no point in
doing it.)

Then we take 3 7 15 1, and convet it to a rational number and:

CF 1 15 7 3

 355 333 22 3 1 0
 113 106 7 1 0 1

And, as I'm sure you noticed, those are all the common approximations that everybody
knows. 3/1, 22/7, 333/106, and 355/113.

I should also point out that they alternate between being a little low and a little high.

 3/1 = 3.0000000
 22/7 = 3.1428571
333/106= 3.1415094
355/113= 3.1415929
pi = 3.14159265...

So each RCF term we input while creating our matrix will cause our answer to go back
and forth between a little low to a little high, with the error becomming less and less. So if
we want to know how much of our answer is correct, we have to use two terms and then
only accept the digits that are the same. For example, by using 333/106 and 355/113, we
can know for certain that pi=3.1415 is correct to 4 decimals.

If we had wanted to, we could have continued the rational to RCF conversion above. We
would have gotten:

2189751040
 697019400 3
 98692840 7
 6169520 15
 6150040 1
 19480 315
 13840 1
 5640 2
 2560 2
 520 4
 480 1
 40 12

That would give us 3 7 15 1 315 1 2 2 4 1 12. And just for the record, pi has a RCF of 3 7
15 1 292 1 1 2... So, previously, if we had continued, it wouldn't have done us much

http://members.tripod.com/careybloodworth/contfrac.htm (10 of 25) [8/21/2002 1:17:28 AM]

Continued fractions

good, because you can already see that the next term is wrong. It's close, but still wrong.
 That just happens to be the best guess with the amount of information it had been given.
 More information gets you a better answer. When I stopped at 3 7 15 1, that was
because I already knew that it would work out to 355/113.

Just as a comparison to our 3 7 15 1 315 1 2 2 4 1 12, if we had converted the previous
rational, we would have gotten: 3 7 15 1 205 4 1 11, and we still would have been able to
get 355/113. Also, you can see, that the term that should be 292 has a bound of 315 and
205.

Of course, it's a little awkward to convert a whole string of ICFs into some enormous
rational and then convert that into a RCF. But we don't have to wait. We can do it on the
fly.

Conversion of an Irregular CF to a Regular CF.
==

Conversion of an ICF to a RCF is actually very similar to converting it to a rational
number. The difference is that every so often, the matrix can 'spit out' a term of the RCF.
 It's some what like reduction, except it doesn't have to divide evenly, it's just that A/C and
B/D have to have the same integer result when you divide. This is because A/C and B/D
represent the new and old approximations, and they also represet the high and low
estimates of the number, so if the high and low bounds agree about an output term, then
that term has been 'solved'.

I'll show you. I'll write the output terms along the far right side, since I have to put them
somewhere.

 ...100 81 64 49 36 25 16 9 4 1 (1)
 19 17 15 13 11 9 7 5 3 1
--
 76 12 4 0 4
 24 4 1 1 0

Notice that 76/24=3.16 and 12/4=3.0 and that both have the same integer.... So we can
spit out a '3' and create our new matrix. We do that by bringing down the remainder.

 ...100 81 64 49 36 25 16 9 4 1 (1)
 19 17 15 13 11 9 7 5 3 1
--
 76 12 4 0 4
 24 4 1 1 0 3
 4 0

Notice that the new matrix 24;4;4;0 has a GCD of 4, so we can reduce it if we want. I'm
going to do that simply to keep the numbers small, but you of course don't have to.
 (Note: Even though there is a '0' in the matrix, 4 is still the GCD because you can divide
4 into 0 with out any remainder.)

http://members.tripod.com/careybloodworth/contfrac.htm (11 of 25) [8/21/2002 1:17:28 AM]

Continued fractions

I'd also like to point out that the matrix 24;4;4;0 means that the next output is somewhere
between 24/4=6 and 4/0=infinity. So we do need to consume more terms to make those
bounds a wee bit closer together.

 ...100 81 64 49 36 25 16 9 4 1 (1)
 19 17 15 13 11 9 7 5 3 1
--
 76 12 4 0 4
 24 4 1 1 0 3
 (reduce x4) 4 0

 555 51 6 1
 79 7 1 0

And we can spit out another term of the regular CF because 51/7=7.2 and 555/79 is 7.02.

 ...100 81 64 49 36 25 16 9 4 1 (1)
 19 17 15 13 11 9 7 5 3 1
--
 76 12 4 0 4
 24 4 1 1 0 3
 (reduce x4) 4 0

 555 51 6 1 7
 16416 1044 79 7 1 0
 1088 72 2 2

And as you can see, you just keep consuming terms and outputing digits whenever you
are able.

The larger the output terms, the more information inputted is required to generate them.
 That 7 came out after processing several terms. The next output would be a 15 and we
need a bit more information consumed to be able to know exactly what we can output.

Conversion from regular continued fraction to decimal
===

You've got several ways to do this. If it's a finite continued fraction, you can simply start
at the bottom and actually evaluate it. Or you could convert it to a rational number and
then evaluate that. If it's an infinite continued fraction, or a long finite continued fraction,
you can't afford to wait until the end. It has to be done 'on the fly', while the terms are still
comming in.

It's actually very much like converting from an irregular CF to a regular CF, (or simply
performing the identity matrix 1;0;0;1 to a regular CF) except that after you spit out a
term, you multiply your new matrix numerator by 10.

http://members.tripod.com/careybloodworth/contfrac.htm (12 of 25) [8/21/2002 1:17:28 AM]

Continued fractions

I'll show you by using the regular CF for pi: 3 7 15 1 292... It would work similarly with
irregular CF's except you have to multiply by the numerator, just like before.

 1 15 7 3
--
 22 3 1 0
 7 1 0 1

Notice that 22/7 and 3/1 both have an integer part of 3, so we can spit out a 3. To create
our next matrix, put 10 times the remainders in the top part, and we bring down the
bottom part. And then we start consuming more input terms.

 1 15 7 3
--
 22 3 1 0
 7 1 0 1 3

 150 10 0
 106 7 1 1

 440 30
 106 7 4

 180 160 20
 113 106 7 1

 670 540
 113 106

Note that it is possible to spit out more than one decimal digit for each input consumed.
 This is because the inputs can be larger than our base 10 and may contain enough
information for more than one of our digits.

You can also output more than a single digit at a time. If you'd like, you can multiply by
100 instead of 10 and get two digits at a time. Of course, you'll have to consume more
terms to have enough information in the matrix to be able to spit out two digits at a time,
so there isn't really anything to be gained by doing it this way.

It is also possible to delay the output and continue consuming input terms and then spit
out a burst of output digits.

And it is possible to do this output with an irregular continued fraction, just like we are
doing with a regular one. You just have to multiply the old term by the numerator, just like
we were doing before when we were converting a ICF to a RCF, or when we were
converting a ICF to a rational number.

Addition, Subtraction, Multiplication, Division of a CF by a number
===

http://members.tripod.com/careybloodworth/contfrac.htm (13 of 25) [8/21/2002 1:17:28 AM]

Continued fractions

Not too hard. Remember our formula?

 aX + b

 cX + d

Let's take our original 2.54 CF of 2 1 1 5 1 3.

Let's add three to it. Our matrix will be 1;3;0;1

CF 3 1 5 1 1 2

 277 72 61 11 6 5 1 3
 50 13 11 2 1 1 0 1

And we get 277/50, which is 5.54.

Let's multiply it by 8, then add 1, and then divide by 2! Our Matrix will be 8;1;0;2

CF 3 1 5 1 1 2

 1066 277 235 42 25 17 8 1
 100 26 22 4 2 2 0 2

And we get 1066/100, which is 10.66. And ((2.54*8)+1)/2 is 10.66.

See how easy all that is?

Addition, Subtraction, Multiplication, Division of a CF by a CF
===

Doing the basic four basic functions with two continued fractions is, unfortunatly, a bit
more difficult.

Again, I'm going to use the CF for 2.54, 2 1 1 5 1 3. I'm also going to use the CF for 3.72,
3 1 2 1 1 3.

So, we have two CFs:

x = x1 x2 x3 ...
y = y1 y2 y3 ...

Our old:

http://members.tripod.com/careybloodworth/contfrac.htm (14 of 25) [8/21/2002 1:17:28 AM]

Continued fractions

 aX + b

 cX + d

could do all sorts of things to one CF, but it simply wont work for two CFs.

Instead, we need to use something like:

 aXY + bX + cY + d

 eXY + fX + gY + h

to be able to cover all the possibilities of what can be done.

And obviously, or 2x2 matrix isn't going to be able to handle those eight numbers, so we
are going to arrange things as a 2x2 matrix, with a second matrix 'floating' underneath the
first.

It'll look like this:

 b d
 f h
 a c
 e g

Then the four basic functions all come down to a starting matrix of:

x+y = 1 0 x-y = 1 0
 0 1 0 1
 0 1 0 -1
 0 0 0 0

x*y = 0 0 x/y = 1 0
 0 1 0 0
 1 0 0 0
 0 0 0 1

I know this isn't quite as simple looking as before, but that's how it has to be done. It's not
quite as random and arbitrary as it appears though.

If you'll notice, the left half contains all of the X terms and the bottom contains all of the Y
terms. The bottom left corner contains the term that has both X and Y. And the upper
right corner contains the integer. The first matrix is the numerators. The second matrix
that floats under the first is the denominators.

http://members.tripod.com/careybloodworth/contfrac.htm (15 of 25) [8/21/2002 1:17:28 AM]

Continued fractions

We write our 'x' CF along the top, and the 'y' along the right. (I know, I _really_ need to
rework all this stuff for left to right conventions!)

And asuming we want to add our two CFs, we'd use the 1;0;0;1;0;1;0;0 matrix.

 3 1 5 1 1 2
--+
 1 0 |
 0 1 |
 0 1 | 3
 0 0 |
 | 1
 |
 | 2
 |
 | 1
 |
 | 1
 |
 | 3
 |

Okay, notice that E and G are zeros. Since E is on the left, it is effected only by the X
term, and since G is on the right, it is effected only by the Y term. We have to input terms
from both CF's before we can do much. I'll input terms from Y, going downwards, until
both of its denominators are non-zero, then I'll do the same by going left for the X. The
math is fairly simple. We take 2x2 matrix, either on the bottom or the left depending on
which direction we are going, multiply it by the input term, and then add it to the previous
2x2 matrix.

 3 1 5 1 1 2
--+
 1 0 |
 0 1 |
 0 1 | 3
 0 0 |
 1 3 | 1
 0 1 |
 1 4 | 2
 0 1 |
 | 1
 |
 | 1
 |
 | 3
 |

After consuming two terms of Y, both denominators on the right are non-zero. We now
have to get rid of the zero denominators on the left.

 3 1 5 1 1 2
--+

http://members.tripod.com/careybloodworth/contfrac.htm (16 of 25) [8/21/2002 1:17:28 AM]

Continued fractions

 1 0 |
 0 1 |
 0 1 | 3
 0 0 |
 6 5 1 3 | 1
 1 1 0 1 |
 7 6 1 4 | 2
 1 1 0 1 |
 | 1
 |
 | 1
 |
 | 3
 |

Okay, our 2x2x2 matrix now has non-zero denominators. Now we start inputing more
terms. Which one depends on whether the integer part of the bottom (7/1 & 6/1) is equal,
and whether the integer part of the left (6/1 & 7/1) is equal. If the bottom differs, then
going left will help. If the left half differs, then going down will help. If none of them
match, then it doesn't really matter. Since I was going left before, I'll keep going left.

 3 1 5 1 1 2
--+
 1 0 |
 0 1 |
 0 1 | 3
 0 0 |
 61 11 6 5 1 3 | 1
 11 2 1 1 0 1 |
 72 13 7 6 1 4 | 2
 11 2 1 1 0 1 |
 | 1
 |
 | 1
 |
 | 3
 |

The bottom is now the same (72/11=6 & 13/2=6), so we stop going left and start going
down.

 3 1 5 1 1 2
--+
 1 0 |
 0 1 |
 0 1 | 3
 0 0 |
 61 11 6 5 1 3 | 1
 11 2 1 1 0 1 |
 72 13 7 6 1 4 | 2
 11 2 1 1 0 1 |
 205 37 | 1
 33 6 |

http://members.tripod.com/careybloodworth/contfrac.htm (17 of 25) [8/21/2002 1:17:28 AM]

Continued fractions

 | 1
 |
 | 3
 |

Okay, 72/11=13/2=205/33=37/6=6, so we can now output a term. Since I have to put
them somewhere, I'll put them at the far left. To spit out a term, we subtract six times the
denominator matrix (11;2;33;6) from the numerator matrix (72;13;205;37) to get the new
denominator matrix. The old denominator matrix becomes our new numerator matrix.

 3 1 5 1 1 2
--+
 1 0 |
 0 1 |
 0 1 | 3
 0 0 |
 61 11 6 5 1 3 | 1
 11 2 1 1 0 1 |
 72 13 7 6 1 4 | 2
 11 2 1 1 0 1 |
 205 37 |
 33 6 |
 ---------- |
6 11 2 |
 6 1 |
 33 6 | 1
 7 1 |
 | 1
 |
 | 3
 |

And then check to see if we can output a second term, which might happen since we
have new denominators. In this case, we can't so we continue consuming terms. Since
both the bottom and the left have different integer quotents, it doesn't matter which
direction, so I'll keep heading down.

 3 1 5 1 1 2
--+
 1 0 |
 0 1 |
 0 1 | 3
 0 0 |
 61 11 6 5 1 3 | 1
 11 2 1 1 0 1 |
 72 13 7 6 1 4 | 2
 11 2 1 1 0 1 |
 205 37 |
 33 6 |
 ---------- |
6 11 2 |
 6 1 |

http://members.tripod.com/careybloodworth/contfrac.htm (18 of 25) [8/21/2002 1:17:28 AM]

Continued fractions

 33 6 | 1
 7 1 |
 44 8 | 1
 13 2 |
 77 14 | 3
 20 3 |
 |
 |

The left side has finally gotten the same integer 44/13=77/20, so I now start moving left.
 (Good thing too, I only had one more term left for Y. It would have been a rather bad
example if I consumed all the input terms and still couldn't do anything!)

 3 1 5 1 1 2
--+
 1 0 |
 0 1 |
 0 1 | 3
 0 0 |
 61 11 6 5 1 3 | 1
 11 2 1 1 0 1 |
 72 13 7 6 1 4 | 2
 11 2 1 1 0 1 |
 205 37 |
 33 6 |
 ---------- |
6 11 2 |
 6 1 |
 33 6 | 1
 7 1 |
 52 44 8 | 1
 15 13 2 |
 91 77 14 | 3
 23 20 3 |
 |
 |

We can now output a 3, since 52/15=44/13=91/23=77/20=3.

 3 1 5 1 1 2
--+
 1 0 |
 0 1 |
 0 1 | 3
 0 0 |
 61 11 6 5 1 3 | 1
 11 2 1 1 0 1 |
 72 13 7 6 1 4 | 2
 11 2 1 1 0 1 |
 205 37 |
 33 6 |
 ---------- |
6 11 2 |

http://members.tripod.com/careybloodworth/contfrac.htm (19 of 25) [8/21/2002 1:17:28 AM]

Continued fractions

 6 1 |
 33 6 | 1
 7 1 |
 52 44 8 | 1
 15 13 2 |
 91 77 14 |
 23 20 3 |
 --------- |
3 15 13 |
 7 5 |
 23 20 | 3
 22 17 |
 84 73 |
 73 56 |
 --------- |
1 83 22 17 |
 6 1 3 |
 275 73 56 |
 50 11 17 |
 |
 |
 |

At this point, we have consumed all of the input and have reached our final matrix. But,
we still can output some terms. The AE term, at bottom left, contains our final ratio for the
rest of the computation. And because we've consumed all of our input, that ratio is exact.
 So, if we do a Euclid's on it, we get

275
 50 5
 25 2
 0

And 5 and 2 are the last two terms of our computation. Let's do a check. Our resulting
CF was 6 3 1 5 2.

 2 5 1 3 6
--
 313 144 25 19 6 1 0
 50 23 4 3 1 0 1

And 313/50 = 6.26. And our original desire was 2.54 + 3.72 and that does equal 6.26!

The other oprations, subtraction, division, and multiplication are all done the same way,
except with a different starting 2x2x2 matrix. It is also possible to do this with irregular
continued fractions. You just do it similarly to the way you did it when you were working
with only one CF.

I think the most obvious thing that you've probably noticed is how much effort is required
to do the four basic math operations with two continued fractions! It is also very error

http://members.tripod.com/careybloodworth/contfrac.htm (20 of 25) [8/21/2002 1:17:28 AM]

Continued fractions

prone, and I had to rework my example 4 complete times before it finally came out right!

How to perform square roots on numbers
======================================

Let's cacluate the square root of two. That's just a simple rational number, but it will help
show the math. We'll work with a full CF later.

Okay, now let's say that X is the CF of our 2. And let's say Y is the square root of it,
Y=sqrt(X). Let's rewrite that as Y=X/Y.

Our operations will actually consume its own output. It wil do this by working such as:

 x
 ax+b a b
 cx-a c -a x
 b+2ax-cxx a-cx

Got it? Right! We will again use our 2x2 matrix. Since we are wanting the Y in Y=X/Y,
and our own number we are using is just two, we will use the matrix 0;2;1;0. The two is
our two, and the one is the Y in the denominator.

 0Y+2
Y = ----
 1Y+0

Feedback:

 0 2
 1 0

We now have to guess what our first term will be. Let's say it's 5. Putting that into our Y
formula gives us 2/5, with an integer part of 0. Nope. 5 and 0 aren't the same. Let's try
3. We get 2/3. Nope. Try 1. 2/1. No, but it can't be less than 1, and it has to be
somewhere between 1 and 2 because we got two when we used 1. (There is probably a
better way to do this, but I don't know what, and my paper that I'm going by doesn't say.)

Feedback: 1

 0 2
 1 1 0 1
 1 -1 2

Our next term is done the same way. We make a guess, put it into our little Y equation.
 We can average Y and F(Y) to get a much closer answer. If x=F(Y) and Y=F(x), then we
chose the smaller of the two numbers. In our case, F(2)=3 and F(3)=2. So we pick 2.
Then we output that two, then immediately input our output.

http://members.tripod.com/careybloodworth/contfrac.htm (21 of 25) [8/21/2002 1:17:28 AM]

Continued fractions

Feedback: 2 1

 0 2
 1 1 0 1
 1 1 -1 2 2
 1 -1 3

Notice that our 1;1;1;-1 matrix is the same matrix we had before! Since our only input is
our output, the matrix is entirely dependant upon itself. In otherwords, since our matrix is
repeating, out output will repeat, and we've reached a pattern that we can quit at. The Cf
of the square root of two is 1 (2), where the number in the parenthesis repeats for ever.

If all of that sounds a bit confusing and a lot like trial and error, well, I feel the same way.
 I have however found a second method in an article by Robert T. Kurosaka that is much
more workable than the method Bill Gosper shows.

Set up a chart like:

P 0
Q 1
R

The 'R' will be our square root result. I don't know where the 0 and 1 come from. My
guess is it's somewhat akin to Gosper's matrix. The first 'R' will just be the integer square
root of the number we are wanting. It's not too hard to know that the integer part of the
square root of two is one. So, we end up with:

P 0
Q 1
R 1

We then calculate the next P. This is the previous R times the previous Q minus the
previous P. So, we do 1*1-0 and get '1'.

P 0 1
Q 1
R 1

We next calculate the Q. This is the original number minus the square of the current P,
then all divided by the previous Q. So we do: (2-(1*1))/1 and get 1.

P 0 1
Q 1 1
R 1

We then calcualte the R. We take the first R, add the current P, then divide by the current
Q, then take the integer part. So, we do INT((1+1)/1) and get 2.

http://members.tripod.com/careybloodworth/contfrac.htm (22 of 25) [8/21/2002 1:17:28 AM]

Continued fractions

P 0 1
Q 1 1
R 1 2

We keep doing this until the R we just calculate is twice what the first R is. Since our first
R is 1, and we just calculated 2, we can stop, knowing that the CF for the square root of
two is 1 (2), with the number in the parenthesis repeats for ever.

According to Kurosaka, if our number is N^2+1 (one more than a square, such as 17), it
will have a CF of n (2n). If it is N^2-1, it will have a CF of n-1 (1 2n-2)

Conversion of a rational number into an irregular continued fraction
==

It's also possible to convert it into an irregular continued fraction.

For example, the 2.54 would be organized as:

 1
2.54= 2 + --------------
 10
 0 + ----------
 1
 5 + ---------
 10
 0 + ---------
 4

Notice the patter of alternating 1's and 10's in the numerator, and the 0's that alternate
with the digits of the original number? Also notice that even though

You end up with a matrix alternating with our estimate and a 1:0.

This method isn't really practical, because, frankly, it's a lot easier to just convert it to a
regular CF like we did in the very beginning. But it does work, and you should know
about it.

Conversion of a series into a continued fraction
==

You use the same basic idea as converting a rational into an irregular continued fraction,
except instead of our numerators being 10, you use whatever denominator. And for the
denominator, you use whatever numerators yours are.

http://members.tripod.com/careybloodworth/contfrac.htm (23 of 25) [8/21/2002 1:17:28 AM]

Continued fractions

For example, let our series be the classic Gregory arctangent series for arctan(1). 4/1-
4/3+4/5-4/7+4/9-4/11.... Incidentally, this will eventually calculate pi, but the convergence
is so slow that is not even close to being practical. But it does make a good example
because all the numbers are small, and we have alternating signs, so you can see how to
handle that.

If we were to evaluate this by hand, we would get 4/1, 8/3, 44/15, 304/105, 2740/945 and
30136/10395.

 11 1 9 1 7 1 5 1 3 1 1
 -4 0 4 0 -4 0 4 0 -4 0 4
--
 30136 1 2740 1 304 1 44 1 8 1 4 1 0
 10395 0 945 0 105 0 15 0 3 0 1 0 1

So, as you can see, we do indeed get the right rationals, alternating with 1/0.

BUT, this method has a serious drawback. You can't extract the regular CF during the
conversion. You have to wait until you are completely done, and then do it.

I don't know how to get around this very serious problem. My reference doesn't say, I
can't find any others, and I can't figure it out!

In short, you are just going to have to without the ability to convert an infinite series into a
CF.

How to perform square roots on continued fractions
==

Detecting patterns in continued fraction math
===

Conversion of a infinite series into an irregular continued fraction
==

Don't know. Probably some what similar to the conversion of a decimal number.

Comparisons, Rounding, Truncation, and approximations of CFs
==

A few things you should know about CF terms
===

http://members.tripod.com/careybloodworth/contfrac.htm (24 of 25) [8/21/2002 1:17:28 AM]

Continued fractions

A few CF sequences you should know
==================================

The addition of, or removal of, an initial 0 to the CF stream simply inverts the entire result.

The sequence a 0 b is equivelent to the single term a+b.

The zero term 'rule' lets you add a second zero in front of one already there, or delete the
zero, and still get the same result.

A sequence such as ...1 2 3 4 5 0 -5 -4 -4 -3 -2 -1... is actually the same as if you didn't
input those terms at all. Because there is a zero in the middle and you are 'subtracting'
the terms you had just put in, the erase each other. This lets continued fraction work be
reversable, where you can input or output a zero and then input or output the reverse
sequence of numbers with the opposite sign.

This can condition can be masked by the rule:

 -a -b -c -d ... = -a-1 1 b-1 c d

Hurowitz numbers are CFs that can be written in a parenthesis notation using
polynomials in k. For example:

e=2 (1 2k+2 1)
e=1 0 1 (1 2k+2 1)
e=(1 2k 1)

And because of the 'zero rule', they are all equivelent.

Square roots of rationals are in the form:

 a (b c ... c b 2a) = (a b c ... c b a 0)

And another nonsense sequence you need to watch out for is:

 ... -1 1 -1 1 -1 1 ...

When detected, you can shut off output until they stop. You can also discard three paris
at a time, since the only effect is to negate the entre state matrix.

http://members.tripod.com/careybloodworth/contfrac.htm (25 of 25) [8/21/2002 1:17:28 AM]

Multiplication

 Home Page

 SiteMap

 Download page

 Feedback form

Carey Bloodworth

Pi
Multiplication

Downloads
Related Links
What's new
Contact Me
Thanks
To do

Multiplication
Schoolboy | Karatsuba | Transforms | Big Digit | Odd sizes | Performance

I'm giving you numerous examples of big number multiplication. The
example programs are public domain. I do, however, ask that if you
find any of them or this site useful, please give me credit in your
program, docs, web page, etc.

Multiplication is surprisingly difficult to do fast.

The normal method, the kind you learned in school, is a N^2 algorithm.
 That that means every time you double the length of the number, you
have to do 4 times as many operations. That gets rather large very
quickly.

There are actually several methods that can improve that. Each has
their own strength and weaknesses. And naturally, the faster ones are
more complicated.

The first method is called Karatsuba, after the the author. It's also
often called the 'Factal Mul' because if you see a picture of the way it
recursively breaks the data, it looks like a fractal. Others call it "Divide
& Conquer". This method has O(N^1.585) growth.

The next method is based Fast Fourier Transforms. There are
actually several kinds, but they all share the same basic ideas. These
methods have O(N*log2(N)) growth.

One method that uses FFTs are the 'big digit' variety. This is where
you treat a group of digits as a single 'digit' and do, well, basically a
schoolboy style.

Another method is related to the FFT method, and those are what I
call 'fake transform' or 'symbolic transform' methods. Meaning you
don't actually do any multiplications to do the transform. This includes
Nussbaumer and Schonhage-Strassen methods. These have a
growth of about O(N*log2(N)*log2(log2(N))) which is slightly less than
a regular FFT. But these methods tend to have more overhead (the
'O' part of the cost formula) and actually usually run slower.

Most big number multiplications tend to work with power of two
lengths. That's due to the transforms working more efficiently with

http://members.tripod.com/careybloodworth/multiplication.htm (1 of 2) [8/21/2002 1:18:09 AM]

http://members.tripod.com/careybloodworth/contact_me.htm
http://members.tripod.com/careybloodworth/links.htm
http://members.tripod.com/careybloodworth/whats_new.htm
http://members.tripod.com/careybloodworth/contact_me.htm
http://members.tripod.com/careybloodworth/thanks.htm
http://members.tripod.com/careybloodworth/to_do.htm
http://members.tripod.com/careybloodworth/bigdigit.htm
http://members.tripod.com/careybloodworth/odd_sizes.htm
http://members.tripod.com/careybloodworth/performance.htm
http://members.tripod.com/careybloodworth/bigdigit.htm

Multiplication

those sizes. In the real world you may need to multiply other sizes.
 That's discussed here.

http://members.tripod.com/careybloodworth/multiplication.htm (2 of 2) [8/21/2002 1:18:09 AM]

http://members.tripod.com/careybloodworth/odd_sizes.htm

Schoolboy

 Home Page

 SiteMap

 Download page

 Feedback form

Multiplication

Schoolboy
Karatsuba
Transforms
Big Digit
Odd sizes
Performance

Schoolboy

The 'school boy' method should be pretty familiar. It's the same old
stuff you've been doing since you were a kid.

 4711
 x 6397
 ========
 7
 7
 49
 28
 9
 9
 63
 36
 3
 3
 21
 12
 6
 6
 42
 24
 ========
 30136267

It requires O(N^2) operations. It takes N*N operations. That means
everytime you double the length, it takes 4 times as many operations.

It's the simplest multiplication method known. It's also the slowest,
although under certain conditions, namely short lengths, it may
actually run faster because it has less overhead.

Enough said.

http://members.tripod.com/careybloodworth/schoolmul.htm [8/21/2002 1:18:23 AM]

http://members.tripod.com/careybloodworth/contact_me.htm
http://members.tripod.com/careybloodworth/bigdigit.htm
http://members.tripod.com/careybloodworth/odd_sizes.htm
http://members.tripod.com/careybloodworth/performance.htm

Karatsuba

 Home Page

 SiteMap

 Download page

 Feedback form

Multiplication

Schoolboy
Karatsuba

Transforms
Big Digit
Odd sizes
Performance

Karatsuba

In the early 60's, it became known that you could 'divide and conquer'
the multiplication. This discovery is attributed to several people, and is
called several things, including 'Fractal mul', 'Karatsuba mul' and
'divide & conquer mul'.

It's doubtful that anybody knows for certain who developed this
method. It's generally accreditied to A. Karatsuba, but several
references, including D. Knuth and D. J. Bernstein suggest that what
he presented in 1962 was somewhat different and more complicated,
and that he didn't even develop it alone. That uncertainty is why I
myself usually call it the "fractal mul" method.

There are several related methods. I'm going to show you the one
that Knuth describes, since it's the most widely available. (This isn't
what Karatsuba himself described. Yet another reason to actually call
this method "fractal" mul or "divide and conquer" mul.)

The method is fairly simple. If you have 'A' and 'B' you divide them
into left and right halves (A1 & A2 and B1 & B2, with R being the size
of the halves) and you use the formula

a*b is: A2B2(R^2+R)+(A2-A1)(B1-B2)R+A1B1(R+1)

The multiplications by 'R' is just shifting (or adding on the bias), since
we deliberately chose it to be half our width of our numbers.

If we are squaring a number, we can do it a little faster if we use:

A^2 is: A2^2(R^2+R)-((A2-A1)^2)R+A1^2(R+1)

We then recursively call these formulas until the chunks are small
enough to use some other faster or more convenient method. (Often
the schoolboy method will be faster for small sizes, because it has
less overhead.)

Since we have to halve the numbers (into 'left' and 'right' parts) the
algorithm works best when the length of the numbers are the same
size and are powers of two.

However, it is possible to do it with lengths that aren't power of two in
length. An old pi program of mine did that. It should also be possible

http://members.tripod.com/careybloodworth/karatsuba.htm (1 of 3) [8/21/2002 1:18:42 AM]

http://members.tripod.com/careybloodworth/contact_me.htm
http://members.tripod.com/careybloodworth/bigdigit.htm
http://members.tripod.com/careybloodworth/odd_sizes.htm
http://members.tripod.com/careybloodworth/performance.htm

Karatsuba

to work with numbers of different sizes, but that's not something that
I've ever tried.

For a=4711 and b=6397, a2=47 a1=11, b2=63 b1=97 Radix=100

If we did this the normal way, we'd do

 a2b2=47*63=2961
 a2b1=47*97=4559
 a1b2=11*63= 693
 a1b1=11*97=1067

 29 61
 45 59
 6 93
 10 67

 30 13 62 67

Or, we'd need N*N multiplications.

With the D&C method, we compute:

 a2b2=47*63=2961
 (a2-b1)(b1-b2)=(47-11)(97-
63)=36*34=1224
 a1b1=11*97=1067

 29 61
 29 61
 12 24
 10 67
 10 67

 30 13 62 67

We need only 3 multiplications, plus a few additions. And of course, at
longer lengths, additions are a lot simpler and faster than
multiplications, so we end up ahead. Plus, we can do this algorithms
recursively and when the numbers are very large, the savings is
substantial.

Overall, the growth rate is O(N^log2(3)) which is O(N^1.585).

It's worth pointing out that this method, unlike the 'transform' based

http://members.tripod.com/careybloodworth/karatsuba.htm (2 of 3) [8/21/2002 1:18:42 AM]

Karatsuba

methods, doesn't have a failure point. It will work as long as you have
the memory to hold it. The "transform" methods require your data type
to be wide enough to hold the product and some extra bits.

Some example code is available on the download page.

Most implementations require the length of the numbers to be a power
of two. In the example program, I show how to allow the size to be
any length. It should also be possible to allow the numbers to be
different lengths, although I haven't coded that. (I've never needed it.)

http://members.tripod.com/careybloodworth/karatsuba.htm (3 of 3) [8/21/2002 1:18:42 AM]

Transforms

 Home Page

 SiteMap

 Download page

 Feedback form

Multiplication

Schoolboy
Karatsuba

Transforms
Big Digit
Odd sizes
Performance

Transforms
FFT Limitations | FFT Types | Cyclic vs. NegaCyclic | FFT Styles | Background

The 'transform' method is usually based on Fast Fourier Transform,
although there are other types. The structures are pretty much the
same, though.

Where as Karatsuba breaks the data into halves and then does three
half sized multiplications, a FFT also divides the data into halves, but it
multiplies one of them by a special "N'th" root of unity. Where as
Karatsuba recursively breaks the data into smaller new chunks, a FFT
just makes multiple passes over the same data.

I'm not going to go into the math because you don't really need it just
for multiplication. At this point, you can really treat a FFT as a 'black
box'. If you want to know some FFT background, go over to
Numerical Recipes. They have quite a bit of decent text, although the
code they offer is (or at least was) extremely poor quality. Sections
you'll probably be interested in chapters 12.0 through 12.4

Using a FFT based multiplication is a bit differently than either the
Schoolboy or Karatsuba style. Those actually do the multiplication. A
FFT is a 'transform' that pre- & post- processes the data and the
'multiplication' turns out to be just a simple vector convoltuion.

The steps for a FFT multiplication are:

Load Number 1 into FFTData 1. Little endian first.
Zero pad FFTData 1 so it is now twice as long.
Load Number 2 into FFTData 2. Little endian first.
Zero pad FFTData 2 so it is now twice as long.
Do a forward FFT on FFTData 1
Do a forward FFT on FFTData 2
Do a convoltuion of FFTData1 and FFTData 2 into FFTResult
Do an inverse FFT on FFTResult
Scale the answer
Convert FFTResult into normal integers. (If needed.)
Release carries
Store answer in 'Result'

All of the transform multiplication methods work this way. Some of the

http://members.tripod.com/careybloodworth/transform_muls.htm (1 of 3) [8/21/2002 1:19:59 AM]

http://members.tripod.com/careybloodworth/contact_me.htm
http://members.tripod.com/careybloodworth/bigdigit.htm
http://members.tripod.com/careybloodworth/odd_sizes.htm
http://members.tripod.com/careybloodworth/performance.htm
http://members.tripod.com/careybloodworth/fft_background.htm
http://www.nr.com/

Transforms

specific details vary, of course, but the basic structure is always like
this.

There are a few details that you need to notice, of course.

First, I said you had to put the numbers into the FFTData in little
endian order. The least significant digit goes in FFTData element
zero, etc. Technically, it is possible to do a transform in big endian
format, but this is much less common and there is very little reason to
even consider doing it.

Second, a convolution is just a simple element-by-element vector
multiply.

Third, you need to scale the answer. Because of the way things work,
each element will actually be multiplied by 'FFT Length' so we need to
divide each element by that. Simple to do, of course.

Fourth, I said you may need to convert the answer to normal integers.
 Sounds odd, but if you do a FFT using regular floating point arithmetic
(the most common way), each element will be a little off. It may be
37.9999 instead of 38. You need to round the answer to integer.

Fifth, I said you need to release the carries... That sounds a little odd.
 A FFT doesn't give the final product. Instead, it gives the
"multiplication pyramid" To use the example I gave in Karatsuba,
instead of getting the final answer like:

 29 61
 45 59
 6 93
 10 67

 30 13 62 67

We actually get:

 29 61
 45 59
 6 93
 10 67

 29 112 162 67

 30 13 62 67

http://members.tripod.com/careybloodworth/transform_muls.htm (2 of 3) [8/21/2002 1:19:59 AM]

Transforms

Each 'digit' of our answer is actually the sum of the answers for that
column. So the 'digit' can actually be larger than what it would
normally be. So, we need to "release our carries" and get our normal
answer.

And that's the basics of FFT based multiplication. There are a lot of
additional details, of course. Like what style of FFT structure to use.
 There are several ways to get to the same result. Some are more
appropriate than others. And, of course, you have a choice of data
types. You can do a plain ordinary floating point FFT, or you can do a
modular math NTT (Number Theoretic Transform) or a Fast Galois
Transform, etc.

But in spite of the numerous 'little details', the basic method is what I
said above.

[As a side note, I pointed out that your data needs to go into the
transform in "little endian" format. Least significant digit first. That's
how it's done with a standard transform. It is possible to make a
transform that is 'big endian', where you put the zero padding first
followed by your data in big endian format. This can be a little more
convenient, but it's uncommon. It's not hard to do. It's just a matter of
changing the trig powers ordering (or changing the trig itself to be
backwards) and changing the butterfly indexing (or changing the
butterfly itself to be backwards.)]

http://members.tripod.com/careybloodworth/transform_muls.htm (3 of 3) [8/21/2002 1:19:59 AM]

FFT Limitations

 Home Page

 SiteMap

 Download page

 Feedback form

Transforms

FFT
Limitations
FFT Types
Cyclic vs.
NegaCyclic
FFT Styles
Background

FFT Limitations

FFT based multiplication is a wonderful thing because it allows us to
multiply very fast.

However, like all silver linings, it has a big, angry dark cloud to go with
it. There are actually several aspests. How you solve these will
influence every aspect of your program. The way it looks, the way it
behaves, the way it performs, how portable it is, etc.

The first has to do with the multiplication pyramid that I mentioned in
the parent section.

Let's say you have X and Y and their product Z, and that each 'digit' is
labeled as X(0,1,2,3,4,...N-1) Then the multiplication pyramid is:

z(0) = x(0)*y(0)
z(1) = x(0)*y(1)+x(1)*y(0)
z(2) = x(0)*y(2)+x(1)*y(1)+x(2)*y(0)
z(3) = x(0)*y(3)+x(1)*y(2)+x(2)*y(1)+x(3)*y(0)
 ..
 ..
 ..
z(2n-3) = x(n-1)*y(n-2)+x(n-2)*y(n-1)
z(2n-2) = x(n-1)*y(n-1)
z(2n-1) = 0

It's sort of shaped like a pyramid, which is why it's called the
'multiplication pyramid'.

This is essentially the standard, normal, plain old digit by digit
multiplication except you don't release your carries until after you get
completely done.

This means that at its peak, the result Z can be far greater than our
normal base. In fact, it can be as large as FFTLength*(base-1)^2.

Because each element can be that large, it has to be able to hold it
without overflowing. This can be dealt with, of course, it sometimes
takes some creativity to do it fast enough to be worthwhile. A regular
'double' data type can quickly overflow. Other methods have their own
strengths and weaknesses.

http://members.tripod.com/careybloodworth/fft_limits.htm (1 of 2) [8/21/2002 1:20:29 AM]

http://members.tripod.com/careybloodworth/contact_me.htm
http://members.tripod.com/careybloodworth/fft_background.htm

FFT Limitations

Another problem with FFTs are the amount of storage they consume.
 Depending on the type, it may be 8 bytes or more for each digit you
multiply. So it's often necessary to be creative to reduce the storage
consumption. A good consumption is 2 bytes for every decimal.

Even if you are creative, it may still be far larger than what will fit in
memory, so you have to think about doing it using disk.

And the list really goes on. There are a whole series of problems
when you want to do multiplication really fast. Sure, a FFT multiply is
'fast', but the choices you make can still result in a factor of 10 (or
more) in runtime between a 'good' and a 'great' multiply.

http://members.tripod.com/careybloodworth/fft_limits.htm (2 of 2) [8/21/2002 1:20:29 AM]

FFT Types

 Home Page

 SiteMap

 Download page

 Feedback form

Transforms

FFT Limitations
FFT Types

Cyclic vs.
NegaCyclic
FFT Styles
Background

FFT Types
Floating point | NTT | Galois | Symbolic

After reading the previous page, you have probably realized that a
FFT multiplication is not a "one size fits all" multiplication method.

What type we chose will depend on what we need from it. If all we are
needing is a few hundred thousand digits, then a simple floating point
FFT is likely to be best. They are relatively easy to code and give
decent results without excessive effort.

Beyond about half a million digits (maybe a million if you code
carefully), either the data type is overflowing or it's taking too much
memory (because we had to reduce the number of decimals per
element in order to prevent overflow.) There are ways to increase the
range, but it's often not worth the effort.

One alternative is a Number Theoretic Transform (or NTT) The
structure is the same as a FFT except we work with modular numbers
(ie: integers) instead of floating point. This is a bit more complicated
and nearly guarantees the use of assembly language. It does,
however, offer excellent memory consumption, good speed (if you are
careful) and quite a bit of flexibility. For my own super large
multiplications (billions), a NTT is the only reasonable choice.

A related method is a Fast Galois Transform (FGT). It's a cross
between a floating point FFT and a modular math NTT. It's sort of like
the two of them 'went behind the barn' together and 9 months later, a
FGT was born. It does a 'complex' math FFT, except it uses modular
integers. It has a little more flexibility and usability than a FFT, but it's
not quite as good as a NTT.

The final type is a bit hard to describe. This is the symbolic transform.
 It's based on a FFT transform, except it does things in such a way
that the transform itself doesn't need any multiplications. The
multiplications are only needed for the convolution. I tend to call these
transforms "fake FFTs" although they are usually called "symbolic
FFTs". They are quite flexible. There are two types. The oldest is the
Schonhage-Strassen multiplication, and the other is the Nussbaumer
convolution. They have the lowest known growth rate of any
multiplication method. Unfortunately, real world implementations
consistantly show they don't perform quite as well as they should.

http://members.tripod.com/careybloodworth/fft_types.htm (1 of 2) [8/21/2002 1:20:48 AM]

http://members.tripod.com/careybloodworth/contact_me.htm
http://members.tripod.com/careybloodworth/fft_background.htm

FFT Types

 Implementations like in GMP v3.1.1 show that Schonhage-Strassen
can be done fairly well, but it's not quite as good as their theoretical
performance would suggest. No better than other methods.

Over all, if you are wanting just a few hundred thousand digits, use a
FFT. If you want more than that, use a NTT and be prepared for some
effort and some assembly.

Of course, each of these have different styles. There are a lot of ways
to write a basic transform. And some are definetly more efficient than
others. It's easily possible for one method to run at only half the speed
of a better method.

http://members.tripod.com/careybloodworth/fft_types.htm (2 of 2) [8/21/2002 1:20:48 AM]

Floating point

 Home Page

 SiteMap

 Download page

 Feedback form

FFT Types

Floating point
NTT
Galois
Symbolic

Floating point
Complex | Real Value | Wrapper | Right Angle | Balanced | FFT Math

A regular floating point FFT is, without a doubt, the most common
transform around. It's widely used in all sorts of digital signal
processing.

We can use several data types, but the most likely is a regular
'double'. How big a number you can multiply will depend on how many
decimals (or bits) you put into each FFT element and how many extra
bits are needed for good trig accuracy so we can recover the integer
answer when we are done.

The best estimate that I've found was by Colin Percival. (His paper is
available on the download page.)

With 'r' being the power of two for the length of the transform, the
number of bits required is:

3.585+Log2(Base^2)+Log2(r+1)+r

This is only an estimate, of course, but it's a reasonably decent one.

If we were going to put 4 decimals into each FFT data element and we
were multiplying 1,048,576 digit numbers, the math would work out
like:

1,048,576 / 4 dec = 262,144 number len
262,144 * 2 = 524,288 FFT length (zero padded.)
'r' would be 19, since 2^19=524,288

3.585+Log2(10,000^2)+Log2(19+1)+19
3.585+26.576+4.322+19 = 53.483 bits

Since a regular 'double' data type is only 53 bits, you can see that we
would be almost half a bit over. However, it might still work. Actually,
it's likely that it will work.

In the formula, we were estimating we were actually putting our base
into each element. In reality, we are only putting an average of 5,000
in there. That only takes 24.576 bits, which means it can all fit into a
'double' data type.

Plus, Colin's formula is a little conversative. (In fact, he actually gives

http://members.tripod.com/careybloodworth/floating_point.htm (1 of 7) [8/21/2002 1:21:04 AM]

http://members.tripod.com/careybloodworth/contact_me.htm

Floating point

three levels. The 'worst case' based on the worst possible data, and
'average' error obtained from 'average' data.)

On the other hand, it also assumes that you have perfect trig
accuracy. Which you aren't actually going to have. In fact, to reach
1m reliably, you may need to put quite a bit of care into your trig
generation. It's a near guarantee that you'll have trig problems by the
time you reach 1m decimals. The x87 FPU registers might be
masking the problem, but it'll be there.

All in all, I suggest limiting yourself to just 512k decimals (4 decimals
per 'double') and maybe 1m if you are sure of your programming and
trig accuracy, or if you use some method to check the size of the
multiplication error.

You might also want to use a "balanced" data format. That
significantly reuduces the average error rate. (Although the total
potential error rate is nearly as high as normal.)

If you really want to push a FFT multiply, you can actually reach a
point where you are multiplying 8 million decimals and getting a 16
million decimal answer, while still putting only 4 decimals per 'double'.
 Of course, at that point, you are indeed pushing the FFT multiply far
beyond it's theoretical limit. Pretty much a guarantee that it will fail
during actual use.

A good way to deal with the possibility of error is to simply go ahead
and do it and wait and see if the error occurs! If an error does occur,
we use some other method. We can easily check for failure when we
round our results to an integer before we release our carries. If it's too
close to an integer, then we've lost too many bits and the results are
questionable. If it's more than, oh, maybe 1/32 away from an integer,
then we can't trust it.

You can, of course, put fewer digits per 'double'. However, the
memory consumption starts becomming a problem. With 4 decimals,
at 512k decimals, it takes 2 megabytes. At two decimals per element,
multiplying 1m decimals would take 8 megabytes for each transform.

Rather than using a 'double', we could use some other data type.

A "long double" has 64 bits of mantissa. But it takes 10 bytes (usually
12 for data alignment). Not great. Sure, it'd work but you are only
going to get just a little further with substantially more memory used.

http://members.tripod.com/careybloodworth/floating_point.htm (2 of 7) [8/21/2002 1:21:04 AM]

Floating point

We could use a "double-double" software package. Using two 'double'
variables, this creates a 106 bit long data type. Keith Briggs has some
in C and David Bailey has some in Fortran. The method works, and it
lets us put 8 decimals into each element and reach about a billion
decimals. All in all, though, it's a bit too much work for too little result.
 (Plus there are some issues about the FPU. You've got be careful not
to use the 'long double' mode of the x87, and make sure you are in the
right rounding mode. And under Windows 9x, it's actually possible for
the FPU precision mode and the rounding mode to change without
your knowledge!! That happened to me a few times during some
development work, and Colin Percival mentioned that it happened
numerous times during his pi-hex project.)

You could also use a fixed point data format. Basically create your
own data type that can hold hundreds of bits. Donald Knuth mentions
this in his "The Art of Computer Programming" vol. 2, 3rd ed. He
gives the 'bits required' formula of:

2^(3K+2L+2.5+lg(K)-M)<=0.5

with K=Log2(fft_length), L=Log2(number_base), and
M=data_type_bits.

That means that for the 4 decimal digit example above, K=21,
L=26.58, and M would work out to be 97 bits. Quite a bit beyond the
53 bits of a floating point method.

So there is very little to recommend a fixed point method. Sure, it
works. But it takes much more work to mess with our home made
fixed point data type. I did try it once, out of curosity, and although I
can't remember the exact level of performance, it was pretty
unspectacular even allowing for a bunch of 'theoretical' optimizations I
might have made.

The only reason I'm bothering to mention it at all is because Knuth
talks about it. (This is a clear example of how something might seem
useful to a mathematician while in reality us programmers know
better.)

Doing a transform with wider data is expensive. The amount of effort
to do the wider operations is considerable. Far, far beyond the cost of
the 'atomic' operations that your CPU and FPU perform naturally.

The closest thing to a possible exception to this is it might be possible

http://members.tripod.com/careybloodworth/floating_point.htm (3 of 7) [8/21/2002 1:21:04 AM]

Floating point

for a carefully coded 'double-double' to run fast enough that your
whole multiplication was only slightly slower. Some of those routines
can pipeline fairly well, and allowing for the other overhead in a
transform, it might work out about even.

As I say in the NTT section,.... stick with 'atomic' CPU and FPU
operations.

Having said all of that, I really have to say that a FFT is only tolerable
(and easy to write) up to about 128k or 256k digits. At 512k and
higher you start encountering a lot of tiny details that can be difficult to
program correctly. Just because it looks like it's reliable doesn't mean
that it is.

Then throw in all the problems of doing it portably (including under
Windows 9x, which has it's own problems), and it's often more trouble
than it's worth. I myself have learned to hate doing any sort of floating
point numerical calculation. Especially under Windows.

There has been some disagreement with my statements above.
 Namely, Dominique Delande showed that you can multiply up to
about 128m decimals with 4 digits per element.

Well... yes. But there is a significant conditional. Namely that you
are willing to accept the occasional failure of your multiplication
routine! (Which also implies that you have to check each digit of the
answer to make sure it is rounds correctly.)

For a 128m digit multiply, at 4 decimals per element, the transform
would be 32m complex elements.

Even assuming 100% accurate trig, that's really pushing it. (And
without 100% accurate trig, a terrifying risk. Every trig value will have
to be accurate to within a couple of bits. Forget about using a
standard trig recurance. With the cosine value being 0.9999999xxxx
those lower bits are critical. The sine value doesn't matter so much
because it has useful data spread thoughout the data. But the cosine
will only have useful data in the lower part of the value, which is where
the trig errors will accumulate.)

http://members.tripod.com/careybloodworth/floating_point.htm (4 of 7) [8/21/2002 1:21:04 AM]

Floating point

For a regular 0...9999 data, that's 26.575 bits just to hold the basic
product, plus 25 for the pyramid (ie: sum of the products), for a total of
51.575. Only 1.5 bits for trig accumulation for conversion to integer.
 That is not very good.

Even switching to balanced -5000..+5000 will only get you two bits
more. Just 3.5 bits for trig.

In my old text pi tutorial, I did say about 3 or 4 bits were needed for the
trig, but that was based solely on experimentation. And I strongly
recommended watching the error rate to make sure it worked,
because at that range, you are pushing things a bit hard! You can't
afford trig errors, round off errors, etc. This was based on me just
putting 9999 into it and testing to see if it works. Well, since each
element was the same value, that does allow a certain amount of
sloppiness in the calculation.

Now, if you put balanced data into your FFT, and each digit is about
'average' (ie: somewhere about 5000, which in balanced form will be
near zero), then you will be able to go much much further. Probably
well into the billions.

But all of this has a cost..... Namely that you can't be sure of your
answer. It's possible for it to be wrong!

Colin's paper gives a fairly solid mathematical analysis of the error rate
and tells you how far you can go while still being able to GUARANTEE
the correctness of the answer. He told me that it's slightly
conservative, but it's still based on a solid analysis of the math.

His paper also gives a graph which shows some actual measurements
of the error rate for 'typical' data and for some contrived 'worst case'
data. The 'typical' error is significantly less, which means you can
multiply much further. But the 'wost case' data has an error rate that is
indeed much much closer to his theoretical error rate limits.

If your data happens to be 'typical' (or 'lucky') then you can multiply
much further. If you have 'unlucky' data, then it will fail much sooner.
 The possibility of failure means you do have to check it's accuracy.
 (For example, when you round the floating point to integer, make sure
that it's reasonably close to an integer already. Since it's supposed to
be close to an integer, the further away it is, the more error has
accumulated. If it gets beyond, oh, 1/16th or perhaps 1/32nd away

http://members.tripod.com/careybloodworth/floating_point.htm (5 of 7) [8/21/2002 1:21:04 AM]

Floating point

from being an integer, then you might want to be suspicious.)

So if you push things too far, you can't be sure in advance that it will
be correct. You have to check and see. If it does fail, then you have
to deal with it some how. Perhaps by using something such as
Karatsuba / Fractal multiply to break it into smaller chunks and then
redoing the whole multiplication.

And even if it is wrong, it might not matter! In many situations, a little
bit of error isn't significant. In some cases, it just doesn't matter. In
other cases it may be corrected later. For example, the Newton
routines (ie: square root and division) are self correcting. If a small
error occurs, it will correct itself later. I've encountered several cases
myself where my multiplication routine was sometimes wrong but I
was still getting the right final answer.

Now.... if you want to take that risk, well, that's your choice. Just be
sure and tell people that your results are suspect. (Unless you've
verified them with a second independant calculation using a different
algorithm, or verified them against a known good answer.)

But there isn't really a heck of a lot of reason to do so. A NTT can run
about as fast and can guarantee a 100% accurate answer. And you
don't have to mess with all the floating point math issues under
Windows. And you don't have to deal with the issues of some
"doubles" being 'double' size and sometimes being 'long double' size
while in the FPU registers.

(Or if you want to, you could just use a Schonhage-Strassen. The
math program GMP shows that it can be done fairly competitively.
 Although it only works in binary and not decimal.)

I stand by my statements above. If you want to be SURE of your
calculation, then you need to use a method that is provably correct
and that isn't going to fail occasionally.

In my early pi programs, I didn't know or care. I got the right answer
and that was all I cared about. I played "fast and loose." After
learning a bit more about floating point math and how it might fail (and
seeing it fail on occasion), now I do care. I believe going with a
provably correct method is the only reasonable choice. There are
already numerous chances for failure duing a calculation.
 (Progammer error, compiler error, hardware error, cosmic radiation

http://members.tripod.com/careybloodworth/floating_point.htm (6 of 7) [8/21/2002 1:21:04 AM]

Floating point

flipping random bits, etc.) Why deliberately add yet another? Cutting
corners is okay sometimes, such as round-off errors accumulated
during a Newton routine. Other times, errors aren't acceptable.

Dominique was willing to take the risk and I'm not willing to take the
risk. That's really what it all comes down too.... the amount of risk you
are willing to take, and the amount of time you're willing to
occasionally spend redoing the multiplication when the FFT fails.

(For the record, Dominique did verify his answer with a known good
answer, so his final result was correct.)

http://members.tripod.com/careybloodworth/floating_point.htm (7 of 7) [8/21/2002 1:21:04 AM]

Complex

 Home Page

 SiteMap

 Download page

 Feedback form

Floating point

Complex
Real Value
Wrapper
Right Angle
Balanced
FFT Math

Complex

Most FFTs are of a 'complex' nature. Meaning they have both a "real"
and an "imaginary" part.

The easiest way to use one in a multiplication is to put our data into
the 'real' part and zero out the 'imaginary' part. (And of course the
FFT data array should be zero padded.)

We then do the transforms, convolution, and inverse transform. And
we get our data out of the 'real' part and ignore the imaginary part.

The convolution is a straight element by element multiply. Just a
simple:

for (x=0; x < Len; x++)
FFTNum1[x]=FFTNum1[x]*FFTNum[2];

Nothing to it. (This is 'complex' math, and the single mutliply shown
above is actually a full 'complex' multiply.)

We scale the answer, round it, and then we get the data out in the
same 'little endian' format that we put it in.

Of course, this is a little inefficient. Half the data array (the 'imaginary'
part) is simply ignored.

There are four solutions.

The first is to take advantage of the math and put two data sets into
the FFT. One in the 'real' and the other in the 'imaginary'. I'm not
going to bother discussing this further because it's not a very good
solution. Sure, it works. If you are doing two transforms, it's twice as
fast. But it can still be faster. And the inverse transform (after the
convolution) will only need one, so we still pay the full bloated price of
that method. If you are still interested, go check the Numerical
Recipes site.

The second choice is to use a Real Value transform. Those are a little
hard to come by, although the Fast Hartley Transform (FHT) is 'real'
only. I've never been very fond of the FHT. It does work, and it works
tolerably well. But I just don't like the structure. It has to be done just

http://members.tripod.com/careybloodworth/complex.htm (1 of 2) [8/21/2002 1:21:40 AM]

http://members.tripod.com/careybloodworth/contact_me.htm
http://www.nr.com/
http://www.nr.com/

Complex

slightly differently. It's actually quite a bit more complicated I
personally never got great performance from it, although others told
me that in their tests it ran slightly faster.

The third choice is to use a 'wrapper' around a regular transform. That
tricks the 'complex' transform into thinking its working with complex
data. In reality, it's pretty much an optimized FFT pass. You are
doing basically the same math as if you were doing a plain FFT. You
just aren't needing the extra memory.

The fourth choice is to use a relatively new method called a Right
Angle transform. Instead of doing any fancy math to trick the FFT into
thinking it's working with 'complex' data, we instead put the data in a
special way, and scale the data. It's pretty simple. It has only one
slight 'problem' and in my opinion is probably the best choice, with the
possible exception of a FHT (although I personally don't like FHT.)
 Wrappers are more common, and it's what I used, but now that I know
about a right angle, I consider it to be better.

Demonstration code is available on the download page.

http://members.tripod.com/careybloodworth/complex.htm (2 of 2) [8/21/2002 1:21:40 AM]

Real Value

 Home Page

 SiteMap

 Download page

 Feedback form

Floating point

Complex
Real Value

Wrapper
Right Angle
Balanced
FFT Math

Real Value
FHT

I don't really have a lot to say about a 'Real Value' transform.

They aren't genuine real value FFTs. They've just been modified to
automatically work with the data knowing it has a bunch of zeros.

I've never seen a nice, readable, descriptive real value transform. All
of the ones I've seen have been very complex. That's the result of the
optimizations to make it a 'real value' transform.

That means I can't give you an example. Sorry.

You can, however, go to the Fast Hartley Transform page and get a
real value transform. The FHT works just as well as a "real value"
transform.

The 'Hartley' transform is very similar to the 'Fourier' transform. A little
more difficult to program, but it might be worth it for you. And it's
inherently a "real value" transform.

The error rate for a FHT seems to be less than for most Fourier
transforms becuase there's no need for a conversion between 'real'
and 'complex'.

http://members.tripod.com/careybloodworth/real_value.htm [8/21/2002 1:21:54 AM]

http://members.tripod.com/careybloodworth/contact_me.htm

FHT

 Home Page

 SiteMap

 Download page

 Feedback form

Real Value

FHT

FHT

The Hartley Transform was discovered by R.V.L Hartley back in 1942.

The 'fast' version of it seems to have first shown up in a book by
Ronald Bracewell in 1984. In spite of the Hartley transform being
published 42 years prior, and the techniques to convert a Fourier
Transform into a Fast Fourier Transform (which also apply to the
Hartley Transform) also dating back 40 (or more) years, Bracewell
decided to patent the algorithm. If anybody wanted to use the
algorithm, they had to pay Bracewell a royalty. Suffice to say, that
wasn't popular. (Ahhh, the joys of the U.S. patent system.)

Fortunately, with a bit of persuasion, Bracewell came to his senses a
few years later and didn't renew the patent. (Or, the cynics among us
figure he just forgot about it until right after it expired, at which point it
was too late to renew.) It's now in the public domain. (Although many
people still mistakenly assume it's patented, resulting in the FHT being
avoided.)

It's a real value transform. The basic structure is indeed very similar to
a Fourier transform.

It is a little more difficult to implement, though.

I don't want to get into a lot of math, so instead, I'll give you a couple
of references. NumRec, unfortunately, doesn't have anything on the
FHT, but the background on the FFT is pretty much the same as the
FHT. The techniques to convert a discrete Fourier Transform into a
Fast Fourier Transform also apply to the discrete Hartley Transform.

Back in April 1988, BYTE magazine had an article by O'Neil on the
FHT. The only other major article that I know of was Robert Scott's
article in Embedded Systems Programming, in September 2000.

The FHT is done very much like the FFT. They are somewhat related
and you can translate the data between the two using a simple
wrapper function.

Where as the FFT works with the 'butterfly' which uses roots based on
natural log (as done by cosine & sine in a complex field), the FHT
works with a 'CAS' function in the real field.

http://members.tripod.com/careybloodworth/fht.htm (1 of 4) [8/21/2002 1:22:06 AM]

http://members.tripod.com/careybloodworth/contact_me.htm

FHT

The basic structure of a FHT is pretty much the same as a FFT. You
can do recursive, iterative, DiT, DiF, radix-2, radix-4, split radix, etc.
etc.

Unlike the FFT, the FHT doesn't really have a 'direction'. The FHT
uses the same cosine and sine values regardless whether it's doing a
forward or an inverse transform. The FFT requires a +1 or a -1 in the
trig generation, of course.

The FHT is a little harder to program, though.

The FFT takes two data elements, does the butterfly on them, and
then puts them back in their own spots.

The FHT doesn't do that. It takes two seperated data points and
generates a single point. If you do it 'in place' like you would a FFT
you would overwrite your data before you got finished with it.

You've got to either use a seperate work area (which takes too much
space) or you have to do two points at once.

Here are a couple of DiT style recursive FHT's. Compare them to
simple recusrive ones on the DiT FFT page. The scrambling has
already been removed and would need to be done before you called
either of these functions.

In the first one, notice the required work space just to be able to do the
'CAS' function?

void RFHT(double *a,int n)
/* Recursive Fast Hartely Transform. Requires work
space */
{int x;
 double theta;
 double OutPut[MAXSIZE*2];

n/=2;
if (n>=2) RFHT(a, n);
if (n>=2) RFHT(a+n,n);
theta=M_PI/n;
for (x=0;x<n;x++)
 {double cas1,cas2,t;
 int i=n-x;
 if (x==0) i=0;
 cas1=a[n+x]*cos(x*theta)+a[n+i]*sin(x*theta);

http://members.tripod.com/careybloodworth/fht.htm (2 of 4) [8/21/2002 1:22:06 AM]

FHT

 OutPut[x] = a[x] + cas1;
 OutPut[n+x]= a[x] - cas1;
 }
for (x=0;x<n*2;x++) a[x]=OutPut[x];
}

In the next one, see how we have to do two seperate points at once so
we can get rid of the working space?

void RFHT(double *a,int n)
/* Recursive Fast Hartely Transform. */
{int x;
 double theta;
 double temp;

n/=2;
if (n>=4) RFHT(a, n);
if (n>=4) RFHT(a+n,n);
theta=M_PI/n;
if (n==2)
 { /* Do the two simple 2 point transforms.*/
 temp=a[0];
 a[0]=temp+a[1];
 a[1]=temp-a[1];
 temp=a[2];
 a[2]=temp+a[3];
 a[3]=temp-a[3];
 }

/* Do the special k=0 loop below */
temp=a[0];
a[0]=temp+a[n];
a[n]=temp-a[n];
for (x=1;x<n/2;x++)
 {double cas1,cas2,t;
 int i=n-x;
 cas1=a[n+x]*cos(x*theta)+a[n+i]*sin(x*theta);
 cas2=a[n+i]*cos(i*theta)+a[n+x]*sin(i*theta);
 temp = a[x];
 a[x] = temp + cas1;
 a[n+x]= temp - cas1;
 temp = a[i];
 a[i] = temp + cas2;
 a[n+i]= temp - cas2;

http://members.tripod.com/careybloodworth/fht.htm (3 of 4) [8/21/2002 1:22:06 AM]

FHT

 }
/* Now do the n/2 point */
if (n/2)
 {double cas1;
 int x=n/2;
 int i=n-x;
 cas1=a[n+x]*cos(x*theta)+a[n+i]*sin(x*theta);
 temp = a[x];
 a[x] = temp + cas1;
 a[n+i]= temp - cas1;
 }
}

For use in multiplication, you've got a couple of choices. You can
either use a wrapper around the FHT to make it look like a FFT, or you
can work with the plain FHT results.

My demo code shows both methods because you need to know about
the differences. Although a FHT works much like a FFT, it's not
identical.

For a FFT wrapper style, the data points end up in a different order
than what you would expect. The real is in the low half and the
imaginary is in the high half. So, the convolution has to be done
differently.

For the plain FHT style, if you do it as a DiF/DiT pair (to avoid the
scrambling) the convolution is a lot more difficult because the FHT
convolution needs data points that are seperated. You've got to do
the first two. Then the next four. Then the next eight. Then the next
16. Then the next 32. Etc. (Yeah, it took me a little while to figure
out. When I investigated the FHT, all I had was the old BYTE article
and one confusing FHT implementation which gave me something to
compare my results to.)

The error rate for a pure FHT (no wrapper) recursive transform is
pretty good, though. Significantly lower than a 'wrapper' style regular
FFT.

Example code is available on the download page.

http://members.tripod.com/careybloodworth/fht.htm (4 of 4) [8/21/2002 1:22:06 AM]

Wrapper

 Home Page

 SiteMap

 Download page

 Feedback form

Floating point

Complex
Real Value

Wrapper
Right Angle
Balanced
FFT Math

Wrapper

Most 'real value' transforms are actually a regular 'complex' transform
with a Real / Complex wrapper around it.

Most wrappers are soley for the DiT style transform. I think I once had
a DiF style somewhere, but I can't find it anywhere. I may have
accidently deleted it during some cleaning. Or maybe I'm wrong and I
didn't have one.

The wrapper is almost a regular FFT pass over our data. It pre-
processes the data, taking our 'real' data, using some imaginary zeros
for the complex part, and putting it into a regular 'complex' form for our
regular FFT. A bit more to it than just that, of course, but that's pretty
much the principle.

The data format is a little differently, though.

Complex elements one through the end are done normally, but
element zero is different.

If you had done a full 'complex' FFT of the full data (putting the data
only in the real and zeroing the complex), element zero and element
Len/2 would both be 'real', with zero in the imaginary. And elemtns
Len/2+1 through the end would be a conjugate of elemtns 1 through
Len/2-1.

Since the upper half is just the conjugate of the lower half, we can
ignore it. Since elements zero and Len/2 are both real, we can put
both of them together.

So, the final 'real' data format ends up being

Result[0].Real = FFT[0].Real
Result[0].Imag = FFT[Len/2].Real
Result[1] through Result[Len/2-1] = FFT[1] through FFT[Len/2-1]
FFT[Len/2+1] through FFT[Len/2] ignored.

This means the convolution has to change slightly.

FFTNum1[0] = Cmplx(real(FFTNum1[0])*real(FFTNum2[0])

 imag(FFTNum1[0])*imag(FFTNum2[0]));

http://members.tripod.com/careybloodworth/wrapper.htm (1 of 2) [8/21/2002 1:22:24 AM]

http://members.tripod.com/careybloodworth/contact_me.htm

Wrapper

for (x = 1; x < Len; x ++)
 FFTNum1[x] *= FFTNum2[x];

The core of the wrapper is

 for (i = 1, j = Len - i; i < Len/2; i++, j--)
 {Cmplx p1,p2,t;

 CmplxConj2(t,Data[j]);
 CmplxAdd(p1,Data[i],t);
 CmplxSub(p2,Data[i],t);CmplxMul(p2,p2,PRoot);
 /* Tricky. Swap and change sign. */
 CmplxSet(t,-Dir*p2.i,Dir*p2.r);

 CmplxAdd(Data[i],p1,t);
 CmplxSub(Data[j],p1,t);CmplxConj(Data[j]);

 /* Normalize */
 CmplxDivV(Data[i],2.0);CmplxDivV(Data[j],2.0);

 NEXT_TRIG_POW;
 }

although you wont find it quite like this very often. Most
implementations will explicitly expand those operations and then fold
them together to get better performance.

Demonstation code is available on the download page.

http://members.tripod.com/careybloodworth/wrapper.htm (2 of 2) [8/21/2002 1:22:24 AM]

Right Angle

 Home Page

 SiteMap

 Download page

 Feedback form

Floating point

Complex
Real Value
Wrapper

Right Angle
Balanced
FFT Math

Right Angle

A "Right Angle" transform is a way of weighting the data so you can
put your real values into a complex FFT without having to do a
wrapper. (A 'Right Angle' is actually a special case of a Discrete
Weighted Transform.)

Instead of doing a wrapper and changing the FFT, you change the
data.

You put your data into the real part of the complex variable
and zero the imaginary. You don't need to explicitly zero pad
because the 'imaginary' part of the variables will be used.

You then scale the data using a very simple trig recurance.

Then you do the regular complex FFT

You do a simple complex vector mul

You do the inverse complex FFT

You do the inverse scaling

You then release your carries. The Real part has the first half
and imaginary has the second half.

This method allows you to use a DiF followed by a DiT style transform
without doing the scrambling.

It's the simplest form of Real<->Complex wrapper there is. The old
style in the previous section is more common, but this is much easier.
 And more efficient. It is supposed to ahve a lower error rate, which
means there's less chance your multiplication will be wrong due to
rounding errors.

My example program doesn't have a very good error rate. It has quite
a bit of error in the trig recurance part. (Of course, it is only sample
code.)

Demonstration code is available on the download page.

http://members.tripod.com/careybloodworth/right_angle.htm (1 of 2) [8/21/2002 1:22:32 AM]

http://members.tripod.com/careybloodworth/contact_me.htm

Right Angle

http://members.tripod.com/careybloodworth/right_angle.htm (2 of 2) [8/21/2002 1:22:32 AM]

Balanced

 Home Page

 SiteMap

 Download page

 Feedback form

Floating point

Complex
Real Value
Wrapper
Right Angle

Balanced
FFT Math

Balanced

A 'balanced' transform is not an actual way of doing a FFT
multiplication. Instead, it's a way of putting the data into the FFT. It
can be used with any of the other methods.

Normally, we put the data into the FFT so it's positive. From zero to
our base. However, with a balanced transform, we allow it to be
negative. Half the range is below zero and the other half is above
zero.

That spreads the error out a little and makes the multiplication a little
more reliable.

There isn't a lot of advantage to it, actually. It does reduce the error
rate a little, and because the data is signed it takes up less space, but
for multiplication, there isn't a lot of advantage.

With 4 decimals per element, a FFT mul is reliable up to 512k
decimals. With care, you can do 1m decimals reliably enough. Two
million and higher is too big.

A balanced data format would improve things and make 1m and 2m
digits reliable (assuming accurate trig), but beyond that it would still be
unreliable and would still likely take too much memory.

So, really, it's only useful for the 1m and 2m range. Less than that and
you don't need it. More than that and the FFT is taking too much
space and the data would still overflow anyway.

I do have some sample code in my multiplication demos on my
download page.

http://members.tripod.com/careybloodworth/balanced.htm [8/21/2002 1:22:37 AM]

http://members.tripod.com/careybloodworth/contact_me.htm

FFT Math

 Home Page

 SiteMap

 Download page

 Feedback form

Floating point

Complex
Real Value
Wrapper
Right Angle
Balanced

FFT Math

FFT Math

There are only a few bits of math that you need to know.

First, the standard complex data format is based on the old FORTRAN
complex data type. A real followed by the imaginary. Whether you do
it as a FORTRAN or C++ data type, or a C struct, or just simply as a
pair of data elements in an array, that is the standard format.

Some people like to do the real and imaginary seperately. However,
that just adds yet another thing to keep track of, and it also doubles
the number of data accesses that have to occur because when they
are together, both are brought into the CPUs cache with a single
reference. (Assuming you have the data aligned properly.) And
having them apart like that increases the 'cache thrashing' because
the variables try to occupy the same cache location (due to the way
most caches are design.)

A basic 'complex' multiply is:

R_r=(X_r * Y_r) - (X_i * Y_i);
R_i=(X_i * Y_r) + (X_r * Y_i);

It is possible to do it with just 3 multiplications. In fact, there are a
couple ways.

Temp=X_r*(Y_r + Y_i)
R=Temp - Y_i * (X_r+X_i)
I=Temp + Y_r * (X_i-X_r)

R=(X_r * Y_r) - (X_i * Y_i)
I=(X_r + X_i) * (Y_r + Y_i) - R

However, it's not all that useful. Back in the 60's when floating point
multiplication was extremely expensive it made sense. But with
modern processors, you aren't likely to encounter a need.

(For the following discussion, I'll call the root 'Root' and the powers
'Pow'. Those variables are usually called 'w' and 'u' for some reason.
 I do it myself sometimes. But 'Root' and 'Pow' are easier for you to
understand.)

http://members.tripod.com/careybloodworth/fft_math.htm (1 of 5) [8/21/2002 1:22:45 AM]

http://members.tripod.com/careybloodworth/contact_me.htm

FFT Math

We compute the root of unity using:

Root=exp(Cmplx(0.0,(M_PI*Dir*(2.0))/step));

However, you rarely actually see it that way. The reason, of course, is
that the EXP() function is a little inaccurate, and more importantly, it
results in too much error later in the trig recurance. (The speed of the
exp() function is irrelevant. We are only doing it Log2(FFTLen) times.
 Unless we are doing a recursive transform, of course.)

Instead, we generally compute it using explicit sine & cosine calls.

Root_r=sin(M_PI/((LENGTH)*2));
Root_r=-2.0*Nth_r*Nth_r;
Root_i=sin(M_PI/(LENGTH))*(DIR);

The reason isn't because of our dislike of the exp() function but
because it helps us generate more accurate powers (Pow) of our root.
 More on that later.

Sometimes you may see it done a little differently.

Such as using pre-generated tables.

Or one of several methods where you replace the sin() calls with a
relationship to compute the new value based on the old value.

Or perhaps based on some Nth root of unity. A N'th root of unity is
basically the same except it's precomputed for for the largest
transform we might do, and then we compute the current root based
on that. This assumes the Nth root is difficult to compute or the author
just likes the looks.

The simplest way to generate our root powers would be to just do
something like:

Pow=Pow*Root;

Pretty simple. (Or if you wanted to be descriptive, like some of the
code in the DiF & DiT sections, you might even use the pow()
function.)

However, except in example programs, you wont ever see it done this

http://members.tripod.com/careybloodworth/fft_math.htm (2 of 5) [8/21/2002 1:22:45 AM]

FFT Math

way. Never. The reason is fairly simple... It accumulates errors too
quickly. You can only do short transforms before the errors get so bad
your results are wrong.

During the transform, both the real and imaginary parts of the root
(variable 'w') will range from nearly zero to nearly one. When it's close
to zero there is no problem becuase all those leading zeros aren't
stored with the floating point data type. Just the actual useful data is
stored. But when it approaches 1.0, it starts becomming
0.999....9xxxxx... All those leading 9's take up space in the data type,
even though they add little useful information. Only the x's (in the
number above) contain actual useful data. But those get pushed off
the end.

Instead, we can be clever. We take advantage of the cosine & sine
relationship and manage to store only the usefull digits and then when
we compute the 'Pow' variable, we combine it in a special way that
gives us the same answer but with less accumulated error.

In other words, since Root_i=sin() like normal, but Root_r=0-sin()
instead of Root_r=cos() and because of that, all those 9's aren't stored
and we have a more accurate trig value. And that means we have to
compute the trig recurance a little differently.

We use the trig recurance:

temp = Pow_r;
Pow_r = Pow_r * Root_r - Pow_i * Root_i + Pow_r;
Pow_i = Pow_i * Root_r + temp * Root_i + Pow_i;

This is very much like a standard complex multiply. Just the final
addition on the end is different. But that little change (and the change
in our Root variable) makes all the difference.

It's not 100% accurate, though. There is still a little bit (about half a
bit, actually) of error accumulation in the recurance and it does build
up. Sometimes other forms are better. For example, you may want to
regenerate the values (via sine & cosine) every 32nd time or
something. There are even other methods to ensure trig accuracy.

You shouldn't have to do that unless you are really pushing the limits
of a FFT. Frankly, by that time you'll be running into quite a few other
FFT based multiplication limitations. I did that once, for various
reasons, and I have to admit, it wasn't really worth the effort.

http://members.tripod.com/careybloodworth/fft_math.htm (3 of 5) [8/21/2002 1:22:45 AM]

FFT Math

I will say, however, that it's extremely easy to write non-portable code
when using the PC. The reason is the 'long double' FPU registers.
 Without even trying, you can get the benefits of the longer registers.
 And that significantly improve your trig recurance accuracy. If you
need portability, whether to a different processor or even to a different
compiler, you have to be a lot more careful.

Even compiling with different options (such as optimizations, or
debugging, etc.) can cause changes in what the compiler keeps in the
FPU registers. Problems like that can be hard to track down.

If you are concerned at all about portability, try using a compiler such
as the old Watcom which completely disables 'long double'. With
other compilers, such as Microsoft C or GNU C, you can change the
FPU mode but you can't guarantee that the compiler wont change it
later or even that the libraries will work properly. It probably will be
okay, but unless you check carefully, you can't be sure. It's possible
for some library routine, an interrupt or the OS to change it without you
even knowing.

Changing the FPU precision or mode under Windows 9x is a little
risky, actually. Sometimes Windows changes it back! Various .DLL's
(including the dll for the standard C runtime library that ships with
Windows) can change it when they load. This is indeed documented
by Microsoft. I spent a lot of time tracking the problem down in my
program, only to discover that several other people already knew
about it and that Microsoft & Borland warned about it.

(Things like the automatically changing FPU settings are the reasons I
got so tired of using FFTs or even using the FPU to do the NTT
modular math. Integer is more reliable. And another reason to stick
with Linux or old DOS for your calculations.)

The more I worked with floating point math (under Win9x) the more I
hated it. There are so many places where you can lose accuracy,
where you can do something wrong, and where Windows itself
conspires against you. I reached a point where I flat out hated the
idea of doing any FPU operation. Sure, the FPU is fast, but if you
can't be sure of the results, then what good is it?

As I learned more, I began to realize how lose I had previously played
with accuracy, and how lucky I had been to get the right answer

http://members.tripod.com/careybloodworth/fft_math.htm (4 of 5) [8/21/2002 1:22:45 AM]

FFT Math

All these reasons are why I prefer to work solely with NTTs, using
integer operations that you can depend on.

http://members.tripod.com/careybloodworth/fft_math.htm (5 of 5) [8/21/2002 1:22:45 AM]

NTT

 Home Page

 SiteMap

 Download page

 Feedback form

FFT Types

Floating point
NTT

Galois
Symbolic

NTT
Mod math | Special Primes | Wide NTT | Multi-prime

A Number Theoretical Transform (NTT) is sometimes known as a
Pollard transform, a prime modulus (or radix) transform (PMT or PRT),
or an integer transform. I think a NTT is more accurate. I particular
dislike calling it an "integer transform" because we work with modular
numbers, not integers, and you can do a regular FFT using integers
(as fixed point numbers, with manual scaling & shifting.)

It's really very much like a regular transform. The differences are that
instead of using a floating point, you use an integer. More
speicifically, a modular integer. Instead of having a N'th root of unity
using trigonometry (sine & cosine) you use a special prime number
and operate modulo that.

Why would we actually want to use a NTT though? Well, to get
around the limitations of a floating point FFT. Remember all those
'bits used' in the previous section? And the amount of memory used?
 A NTT can much more easily go much further without taking nearly as
much memory.

Simple as that. Well.... not exactly simple. There are some problems
that I'll discuss shortly.

Since there is no inaccurate trig for us to deal with, our 'bits required'
formula is much simpler. It's just:

Log2(Base^2)+Log2(FFTLen)

Pretty simple, huh?

(It's worth pointing out that with a FFT, the data can overflow at any
point, and the results be wrong. With a NTT, the only time it can
overflow is after we've done the transform, after we normalize it (by
dividing by NTTLen), and are about to release the carries. That's the
only time. All the rest of the time the data is deliberately overflowing.
 That's what modular arithmetic is all about.)

So... Let's see just how far we can go. Hmmm.. Just by looking at it, I
can see that a 32 bit integer is just not going to be big enough. A 64
bit number is going to be the minimal.

If I put 4 decimals per element, like before, I'd be able to reach:

http://members.tripod.com/careybloodworth/ntt.htm (1 of 3) [8/21/2002 1:23:09 AM]

http://members.tripod.com/careybloodworth/contact_me.htm

NTT

64-26.57=37.43 Or just 37, since we don't need the fractional bits.
 And since our prime number isn't going to be a full 64 bits, let's just
say 36 just to be safe.

So, that means we could do a transform of 2^36 That's 64 billion long.
 With each element holding 4 decimals and allowing for zero padding,
that means we'd could multiply up to 128 billion decimals!!!

WOW! Simple example code is available on the download page.

The memory usage would be Decimals/4*2*8 which works out to
needing 4 times as many bytes as decimals. Not bad. Not bad at all,
actually. (Although I mentioned before that I could get it down to half
that, or just twice the number of digits in storage. Sometimes that
extra savings is indeed important.)

But there is more to think about than how much memory it takes.
 Decent run time would also be nice!

So, the question is... How can we do a modular multiply quickly? For
that, we head to the ModMath section.

Another issue that's worth pondering is how can we reduce the
memory? As I said above, sometimes you need the reduced memory
consumption. When you try to multiply numbers that are billions of
digits, you may flat out not have the disk space to spare.

The big waste in a NTT is the pyramid size. The Log2(FFTLen) part.
 No matter how many decimals we put into each element, it will always
cost that much. So why not put more digits into each element?

Let's see... If I still wanted to multiply up to 128 billion decimals:

4 dec = Log2(Base^2)+Log2(FFTLen) = 26.576+36=62.576
Cost=15.644
8 dec = 53.151+35 = 85.151 Cost=10.644
16dec= 106.302+34 = 140.302 Cost=8.769
32dec= 212.604+33 = 245.604 Cost= 7.675

Well...it looks like it gets pretty big rather quickly. Notice, though, that
the 'bits per decimal' cost has dropped. It starts out at 15.6 and drops
to half that.

Hmm... Frankly, it sounds rather difficult to multiply numbers that are

http://members.tripod.com/careybloodworth/ntt.htm (2 of 3) [8/21/2002 1:23:09 AM]

NTT

246 bits wide. Well, it is. There are several ways to deal with that.

The first option is to just go ahead and do it with a regular multiply.
 Hardwire it for that size to reduce overhead, etc. And chose a special
prime to make the modulo easy. This isn't really a very good choice
because the multiplication itself is going to take a little longer than
you'd like and because there aren't any good primes that would make
the modulo fast.

Another way would be to make the number wide enough so you could
use a little fft multiply on it! Using a 'discrete weighted transform' can
make the modulo 'automatic'. This is similar to how George Woltman
does things in his GIMPS (Great Internet Mersenne Prime Search)
program. But that doesn't work well either. By the time the number is
wide enough to do this, it's going to cost you too much for the multiply
and for the overhead.

The wider the number, the more work it takes to multiply. That grows
faster than any savings we would get from doing a shorter transform.
 So we've got to have as narrow a number as possible! But yet to
save storage we have to make it as wide as possible. <sigh>

We could use a montgomery modular multiply (discussed in ModMath)
which would make the modulo easier, but that wouldn't help the
multiplication cost itself.

There is a solution, and that's to use a multi-prime NTT with a Chinese
Remainder Theorem. This lets us break a wide NTT into several
narrower transforms and then build up the answer as if we had done
the wide NTT. Although it does have a cost... Namely a near
guarantee that you'll have to use assembly language.

Doing a multi-prime NTT is a lot more difficult than a regular NTT.
 And doing a regular NTT is more difficult than a FFT. It's harder to do
the math efficiently.

http://members.tripod.com/careybloodworth/ntt.htm (3 of 3) [8/21/2002 1:23:09 AM]

Mod math

 Home Page

 SiteMap

 Download page

 Feedback form

NTT

Mod math
Special Primes
Wide NTT
Multi-prime

Mod math
ModMul | 33-64 bits | Montgomery | Other ModMul

Doing modular math is pretty easy. Doing it fast is a little more
difficult, of course.

Generally it's easier to work with modular numbers that are positive.
 You can do them 'balanced' where they are both positive and
negative, but things are easier (and work just as well) when they are
positive.

Addition and subtraction are pretty easy, of course.

ModInt ModAdd(ModInt Num1, ModInt Num2, RawInt
Prime)
{RawInt Sum;
Sum=Num1;
Sum=Sum+Num2;
if (Sum >= Prime) Sum=Sum-Prime;
return Sum;
}

ModInt ModSub(ModInt Num1, ModInt Num2, RawInt
Prime)
{RawInt Dif;
Dif=Num1;
Dif=Dif+Num2;
if (Dif < 0) Dif=Dif+Prime;
return Dif;
}

(RawInt is large enough to hold the sum/dif of the operation. If it isn't,
you have to be more careful and check for over/under flow.)

Doing a ModMul() is a little more difficult. Basically we can do
something like this:

ModInt ModMul(ModInt Num1, ModInt Num2,RawInt Prime)
{LONGLONG Prod;
Prod=Num1;
Prod=Prod*Num2;
return (ModInt)(Prod % Prime);
}

http://members.tripod.com/careybloodworth/mod_math.htm (1 of 4) [8/21/2002 1:23:29 AM]

http://members.tripod.com/careybloodworth/contact_me.htm

Mod math

And as long as "LONGLONG" is big enough to hold the full product
and the modulo operation works, then this will work.

For other methods of modular multiplication, see the section on
ModMuls. To keep this page short, I'll just blindly assume you can do
a ModMul somehow.

To do a NTT, we need three semi-constants and a special prime. For
the sake of brevity here, I'll assume you already have the special
prime and its associated primative root.

Each of these semi-constants can be computed on the fly. The
computational cost isn't great. Some people prefer to precompute
them, use tables, etc.

The first semi-constant is our root of unity. This is derived from the
prime, the primative root, and the length of our transform. (If you want
to precompute the Nth root and then build it up during the transform.)

NthRoot=ModPow(PrimvRoot,Prime-1-(Prime-1)/NTTLen);

Or, if you compute it 'on the fly' during the transform (comparable to
the cosine & sine calls in a floating point FFT), you would do it like:

Root=ModPow(PrimvRoot,Prime-1-(Prime-1)/Step);

Doing it "on the fly" as needed is a bit cleaner, I think. The ModPow
only takes a few modular multiplies and it's only called Log2(NTTLen)
anyway.

The second semi-constant is our inverse root of unity. It's what we
use to do an inverse NTT. (Remember the 'Dir' variable in the
complex floating point FFT's? We can't do it like with a NTT, so we
need to compute seperate semi-constants.)

NthRoot1=ModPow(PrimvRoot,(Prime-1)/NTTLen);

The 'on the fly' version is:

Root1=ModPow(PrimvRoot,(Prime-1)/Step);

The third semi-constant is our multiplicative inverse for our transform
length. Remember in the complex floating point FFT we had to divide

http://members.tripod.com/careybloodworth/mod_math.htm (2 of 4) [8/21/2002 1:23:29 AM]

Mod math

our answer by FFTLen? With modular numbers you can't easily
divide. You can however multiply by the inverse. This isn't genuine
division, just cancellation, but that's all we need.

MulInv=FindInverse(NTTLen);

FindInverse is defined as:

FindInverse(x)=ModPow(x,Prime-2);

And of course, modular powers are done with a standard 'binary'
power method.

ModInt ModPow(ModInt base,int expon)
{ModInt prod,b;
 int x;

if (expon <= 0) return 1;

b=base;
while (!(expon & 1))
 {
 b=ModMul(b,b);
 expon>>=1;
 }
prod=b;

while (expon>>=1)
 {
 b=ModMul(b,b);
 if (expon & 1) prod=ModMul(prod,b);
 }
return prod;
}

These semi-constants can be precomputed, stored in tables, etc.
(which is why I call them "semi-constants"), but they are easy enough
that you can compute them whenever you need them.

I should comment on the 'normalization' done in the ModAdd() and
ModSub(). You may see it done a little diferently, in order to remove
the conditional statement. Modern processors (and especially the
poorly designed Pentium-4) lose a lot of performance when they
mispredict a jump. And these operations will be nearly random. 50%
of the time the processor will mispredict the jump.

http://members.tripod.com/careybloodworth/mod_math.htm (3 of 4) [8/21/2002 1:23:29 AM]

Mod math

Anyway, sometimes you'll see it done as with the Shift & Mask method
to correct for underflow.

Num=Num + ((Num >> 31) & PRIME)

If the number is negative, it shifts the sign bit over the entire word
(making it all bits set) and then it masks the prime, making the
expression equal to Prime. If the number is positive, then no bits get
shifted and the mask ends up being zero.

This method is restricted to a max of 31 bit primes with 32 bit words,
or a max of 63 bit primes with a 64 bit word. In other words, signed
data.

http://members.tripod.com/careybloodworth/mod_math.htm (4 of 4) [8/21/2002 1:23:29 AM]

ModMul

 Home Page

 SiteMap

 Download page

 Feedback form

Mod math

ModMul
33-64 bits
Montgomery
Other ModMul

ModMul

As was pointed out in the parent section, doing the modular
multiplication is the hard part.

Sure, we can do something like this:

ModInt ModMul(ModInt Num1, ModInt Num2,RawInt Prime)
{LONGLONG Prod;
Prod=Num1;
Prod=Prod*Num2;
return (ModInt)(Prod % Prime);
}

And as long as "LONGLONG" is big enough to hold the full product
and the modulo operation works, then this will work. On the X86, it'll
work for 32 bits or less, since the x86 generates the full 64 bit answer
of a multiply. Other processors (such as the PowerPC) have to do
more work.

There are several problems with that method

First, the modulo operation is slow. It takes close to 40 cycles on most
processors. Trust me, that's not very fast. Especially when you
realize that the multiply operation took only a couple of cycles.

Second, if we are working with primes that are larger than 32 bits, then
obviously we can't code it like that. If you are working with 64 bits you
might wnat to check here. You might also want to check the section
on Montgomery modular multiplication. That kind of modular
multiplication makes doing the modulo very easy.

It's also possible to do a generic method.

If you are working with primes that are 32 bits or less, then your
problem is speed.

One way to do this is to do this is to use both the FPU and the integer
part. The FPU computes the high part and the integer part computes
the low part. We then multiply by the reciprocal to do the division.

double GLOBAL_INV=1.0/Divisor;

http://members.tripod.com/careybloodworth/mod_mul.htm (1 of 5) [8/21/2002 1:23:44 AM]

http://members.tripod.com/careybloodworth/contact_me.htm

ModMul

long GLOBAL_DIV=(double)Divisor;

long timesmod(long a, long b)
{
 /*This is a clever 31-bit modular multiply that
doesn't
 need 64-bit math. Note that the number to
reduce by
 (and its double precision reciprocal) must be
stored
 in globally. For details see ACM SIGPLAN
notices,
 vol. 27 no. 1, p.95 */

double dquot = (double)a * (double)b * GLOBAL_INV;
unsigned long reducedquot = dquot + .5;
unsigned long remainder = a * b - reducedquot *
GLOBAL_DIV;
return (remainder & 0x80000000? remainder+n:
remainder);
}

This is very portable. It'll work on any processor. Another way to write
it is:

ModInt
ModMul(ModInt a, ModInt b)
{ModInt rem;
rem = a * b;
rem = rem - Prime * ((ModInt) floor(0.5+RecipPrime *
((double) a) * ((double) b)));
if (rem < 0) rem +=Prime;
return rem;
}

Both of these are limited to 31 bits, because they need to allow for the
chance of the intermediate result being negative.

The big problem with this method is that it's slow, especially on the
x86. First, the conversion from 'double' to integer is extremely slow on
the x87.

Second, it doesn't pipeline well. On modern processors, it's critical to
keep the processor as busy as possible.

http://members.tripod.com/careybloodworth/mod_mul.htm (2 of 5) [8/21/2002 1:23:44 AM]

ModMul

Third, if you try to code this in assembly, you have to make sure you
use the same rounding mode as what C uses. This is a somewhat
minor point, but I mention it because I once spent quite a while
debugging some code because elsewhere in the program I had
changed the rounding mode. Under C it didn't matter because it
always set the rounding mode and then changed it back when it got
done.

Another way is to take advantage of the x87's "long double" registers,
which can hold a full 64 bits. The powerPC and most other
processors don't support this, so this is definetly not portable!

You can do this with code such as:

#define MAGIC 3*2^63
#define JUSTIFY 3*2^52

double temp;

void ntt586mul(long *a, long *b, long size) {

 register double f0, f1;
 long ALU, temptr = (long *)&temp;

 do {
 f0 = (double)a[0];
 f1 = (double)b[0];
 f0 = f0 * f1;
 f1 = f0;
 f0 = f0 * reciprocal; /* f0 = quotient, f1 =
remainder */

 f0 = f0 + MAGIC;
 f0 = f0 - MAGIC; /* round to nearest by
justifying mantissa */

 f0 = f0 * prime;
 f1 = f1 - f0; /* compute a*b-n*q */

 f1 = f1 + JUSTIFY; /* push answer to bottom of 53-
bit mantissa */
 temp = f1; /* store to temporary space */

 ALU = *temptr; /* put bottom 32 bits of
mantissa into ALU */

 ALU = ALU + ((ALU>>31) & prime); /* if answer

http://members.tripod.com/careybloodworth/mod_mul.htm (3 of 5) [8/21/2002 1:23:44 AM]

ModMul

negative add prime */
 a[0] = ALU; /* put remainder
back */

 a++; b++; size--;
 } while(size);
}

There are several clever things going on here. First, we are using the
x87's registers to compute the full 64 bit product. (Actually 62 bits,
because the x87 can only load signed 31 bit integers.)

Second, we are being clever in how we round our result. (The FPU
MUST be in 'long double' mode an in 'round' mode.) Since the x87
doesn't have a nice fast 'round' instruction, we do it outselves by
adding 0.5 to it. (Actually, this is taken care of by the FPU being in
'round' mode.) When we add a very large number to it that causes the
FPU to 'round' the number because it's so big that it's pushing the
fractional bits right out of the register. It's overflowing in a controlled
maner. We then subtract that same value and we have our answer
rounded.

Third, we are avoiding the slow double->integer conversion that
plagues the x87. I don't know why Intel never made it faster, but they
didn't. It is hideously slow. So slow in fact that it's better if we go out
of our way and do it ourselves. We do this by adding a 'magic' number
that pushes our answer down to the lower 32 bits. We then store the
'double' and then access the lower integer part directly. And we have
our answer.

Fourth, we are being clever in how we normalize our answer. It could
actually be below zero, in which case we need to add PRIME to it. We
just check the sign bit, right shift it all the way down (which creates a
mask of 0x00000000 or 0xffffffff), 'bit and' it with the prime. If it was
negative, the value equals prime. If itw as positive it's equal to zero.
 We then add that to the answer.

This is just a fancy way of saying: if (prod < 0) prod+=PRIME; The
advantage is there isn't a jump / conditional in it which can cuase the
pipelines to flush and a computational 'stall' to occur. On many
processors (especially old ones) it's faster to just do the explicit 'if'
statement check.

Now, you can do this in C. I've done it. However, it's a little touchy
with agressive compilers. Sometimes the constants get removed

http://members.tripod.com/careybloodworth/mod_mul.htm (4 of 5) [8/21/2002 1:23:44 AM]

ModMul

because it notices you are adding and then subtracting the same
value. The solution is to put each access into a seperate variable
declared as 'volatile'.

Also, many compilers are very sensitve to you loading the integer part
of the double you just stored. It may notice it's not needed and not
bother to actually store it. And it may be sensitive to the style of code
you write to retreive the integer part. GNU C is sensitive about this,
even going so far as to ignore certain ANSI/ISO C requirements.

All in all, this method works a lot better when you write it in assembly
language!!

Another reason to write it in assembly language is that with very
careful coding you can get several results in the same time it takes to
get just one! Jason Papadopoulos once wrote some pentium
optimized code for me to do this, and he manage to get it down to just
64 cycles for 4. About the same time that it would take to get just one
answer. His public domain code is available on the download page.

But what if you don't want to do it like this? What if you aren't running
on a x86 or are working with primes larger than 31 bits?

In that case, you've got a couple of choices.

If you are using 64 bit primes, check here.

For general purpose stuff (including 62 bit primes), check the section
on Montgomery's modular multiplication.

http://members.tripod.com/careybloodworth/mod_mul.htm (5 of 5) [8/21/2002 1:23:44 AM]

http://www.isr.umd.edu/~jasonp/pipage.html

33-64 bits

 Home Page

 SiteMap

 Download page

 Feedback form

Mod math

ModMul
33-64 bits

Montgomery
Other ModMul

33-64 bits

Doing a 64 bit modular multiply is not easy when all you have is a 32
bit computer. Even if you have a 64 bit computer it might still not be
easy to obtain the 128 product and do the modulo.

There are two solutions. Use Montgomery modular multiplication for
multidigit numbers, or use special primes.

Some primes are easier to do the modulo than others. For example,
the 64 bit primes:

FFFFFFFF00000001
FFFFFFFC00000001
FFFFFF0000000001

are slightly easier to do as a modulo than most. This is because there
are so many bits set in the upper half.

However, I would still not call it easy.

Mikko Tommila's APFloat package has a wide range of modules, one
of which uses the three 64 bit primes above. The file Raw.h from the
module 64unix.zip gives an example of how it can be done. It's not
pretty. It is better than not being able to do it at all, and better than
many other methods, but it's not pretty. (This file is distributed under
Mikko Tommila's freware license which allows modification and
distribution provided it's not sold.)

This method does require only four 32 bit multiplications, but it
requires a lot of other operations too. And it's pretty much limited to
just the three primes above. Maybe a few others, but they become a
bit harder than those three.

If you can live with 62 bit primes, you can use the method described in
the Big Montgomery section. It shows a fairly clean way to do it in 6
integer multiplies, but there is less overhead. It does require 64 bit
integers. (All GNU C compilers supply them. As doe all C99 standard
C compilers.) It does have the advantage that you can use many
more primes than just the three above.

http://members.tripod.com/careybloodworth/ntt_33_64.htm (1 of 2) [8/21/2002 1:23:52 AM]

http://members.tripod.com/careybloodworth/contact_me.htm
http://members.tripod.com/careybloodworth/HTMLobj-122/Raw.h

33-64 bits

Another possibility is to use primes that are about 50-52 bits. Those
will fit into a 'double'. You then use a method similar to the
'timesmod()' method in the previous ModMul page. Except, you use a
software based 'double-double' package to create a 106 bit LDouble
type to do the math with. (Both Keith Briggs and David Bailey have
such packages.)

It definetly works. But it is a bit slow and awkward. To get good
performance, you'd probably have to try and pipeline it and do two at a
time. It would also use more memory than an integer method. Plus
you have to deal with the same kind of FPU problems as in with a
floating point FFT. The FPU is just too unportable and too unreliable
for my taste.

I've never actually done a full NTT this way, although I think Xavier
Gourdon used this method in his pi program.

http://members.tripod.com/careybloodworth/ntt_33_64.htm (2 of 2) [8/21/2002 1:23:52 AM]

http://www-epidem.plantsci.cam.ac.uk/~kbriggs/doubledouble.html
http://www.nersc.gov/~dhbailey/

Montgomery

 Home Page

 SiteMap

 Download page

 Feedback form

Mod math

ModMul
33-64 bits

Montgomery
Other ModMul

Montgomery
Big Montgomery

Montgomery multiplication is a way of doing a modular multiply without
doing a slow modulo operation. Instead, you convert the modulo into a
multiplication and the division ends up being just shifting. It converts a
difficult modulo into an easy modulo.

To use Montgomery, you preprocess all the data (convert into
Montgomery space), do your NTT, and then post process all the data
(convert out of Montgomery space.)

Addition and subtraction work the same as before with the same prime..
 The one area that is different is the modular multiply.

By changing the order of the modular numbers you are working with,
Peter Montgomery realized that you could change the division / modulo
into division / modulo by a power of 2, which is just a shift.

It isn't free, though. You do have to do some math to do the modulo, but
it's easier math.

There isn't a lot on the web about Montgomery multiplication. Well, there
is but most of what is available is geared towards cryptography, and
often hardware implementations. They have conditions we don't, so their
solutions aren't entirely suitable for us.

However, there are a few items of use. The first is an old posted
message that gives a reasonable decent explanation of a simple
implementation. Montmul.txt

There are some other references, but they are oriented toward big
Montgomery multiplication, where the numbers don't fit into a single
word.

And with the working example code I'm including, you should be able to
understand the basics of doing Montgomery Modular Multiplication.

(Note that there are many ways to do this. Several 'flavors' plus research
is continuing to develop new methods. What I'm showing here works
and that's good enough for you right now.)

The first thing we need to do is decide on what we want our 'easy divide'
to be. Our radix 'R'. This is usually the next power of two larger than

http://members.tripod.com/careybloodworth/mont_mul.htm (1 of 4) [8/21/2002 1:24:09 AM]

http://members.tripod.com/careybloodworth/contact_me.htm
http://members.tripod.com/careybloodworth/HTMLobj-121/Montmul.txt

Montgomery

your prime. For example, on a 32 bit computer, you should probably use
2^32. Your word size. That makes division very easy. (Remember, I
said Montgomery modular multiplication makes a hard modulo into an
easy modulo. The modulo is still there.)

We then need to find three constants. 'ToMontC', 'FromMontC' and
'MontMulC'. (I've appended a 'C' to the function names where they are
used. Makes it easier to remember.)

(An existing ModMul has to be used. It's only used a few times, so you
can be sloppy and do it with a 'bit by bit' method.)

ToMontC is obviously the constant we use to convert to Montgomery
representation. To convert to Montgomery we ModMul this constant and
our data. Of course, since our ModMul is slow, it's better to convert the
constant to Montgomery and that way we can do a MontMul with our new
constant and our data.

The actual formula to compute ToMontC is

ToMontC=-(Prime^-1) mod R

Assuming that you chose 'R' to be your word size, that works out to just

ToMontC = (0 - Prime) % Prime;

FromMontC is used to convert from Montgomery representation. Again,
you ModMul it and the data to get the new (regular) data. And again,
since that means using a slow ModMul, it's faster to convert 'FromMontC'
to Montgomery form and then MontMul it and the data to get the original
data.

Computing FromMontC is easy. We simply find the regular modular
multiplicative inverse of our original ToMontC value. Which is just:

FromMontC=ModPow(ToMontC,Prime-2)

Our last constant we need is the MontMulC, which is used during the
MontMul itself. This constant is the multiplicative inverse of our prime,
except it is in Montgomery format based on our radix 'R'.

It's defined as:

RR' - NN' = 1

http://members.tripod.com/careybloodworth/mont_mul.htm (2 of 4) [8/21/2002 1:24:09 AM]

Montgomery

Or, R' is the inverse of R (our base) under multiplication mod N (or
prime), and N - N' is the inverse of N under multiplication mod R.

Again, this is an 'inverse' so and we could use

MontMulC=MontPowR(Prime,Prime-2);

(MontPowR is a regular binary power routine, like ModPow, except we
work modulo our word base, instead of a prime. If our base is a regular
32 bit integer, we would just be doing regular 32 bit multiplices, getting
the regular 32 bit answer.)

But actually it works out that you can just say:

MontMulC=Prime-2;

So why bother 'computing' anything?

Now, what is the actual Montgomermy multiplication function?

The algorithm is normally given as a 'reduction' function. In other words,
just the Montgomery Modulo part. It assumes you've already mutliplied
the two 32 bit numbers and gotten the 64 bit answer.

Here it is:

function REDC(x)
 m=((x mod R) * MontMulC) mod R
 t=(x + m * Prime) / R
 if (T < N) return t;
 else return Prime-t;

'R' is just our word size, so it's just selecting the high or low words.
 (Unless you wanted to be 'funny' and chose a different base.)

Assuming we are using 32 bit primes, and haven't done the multiply yet,
an actual implementation is:

ModInt MontMul(UINT32 Num1,UINT32 Num2)
{UINT32 Lo1,Hi1,Lo2,Hi2;
 UINT64 LP1,LP2,T;
 UINT32 m;
LP1=((UINT64)Num1)*((UINT64)Num2);Lo1=LP1;Hi1=LP1>>32;

m=(Lo1 * MontMulC);

http://members.tripod.com/careybloodworth/mont_mul.htm (3 of 4) [8/21/2002 1:24:09 AM]

Montgomery

LP2=((UINT64)m)*((UINT64)Prime);Lo2=LP2;Hi2=LP2>>32;

T=((UINT64)Hi1)+((UINT64)Hi2);
if ((Lo1+Lo2) < Lo1) T++;

if (T >= Prime) T-=Prime;
m=T;
return m;
}

That may not be the clearest. The code does use 64 bit integers even
though the primes are only 32 bits. That's just the way Montgomery
Multiplication works.

This is actually pretty much a waste of time, though.

Let's be blunt here... If you were using 31 or 32 bit primes, there are
faster ways to do things. Jason's Pentium optimized 31 bit ModMul
springs to mind.

BUT where Montgomery shows its advantage is when you do primes
that are larger than your word size.

For that, you need to see the sub-section, BigMontgomery.

http://members.tripod.com/careybloodworth/mont_mul.htm (4 of 4) [8/21/2002 1:24:09 AM]

Big Montgomery

 Home Page

 SiteMap

 Download page

 Feedback form

Montgomery

Big
Montgomery

Big Montgomery

What if we want to do 'big' montgomery. For example, what if we are
using 64 bit primes.

We could just do it normally, using full 64 bit math operations, but it's
more efficient to treat the montgomery multiply as if it was a multi-
precision number, composed of two 32 bit integers. Which it is on a
32 bit computer.

The best reference I found was a paper by Cetin Koc, Tolga Acar, and
Burton Kaliski Jr. titled "Analyzing and Comparing Montgomery
Multiplication Algorithms. It's available on the download page.

As you may know, there are a couple ways to do basic schoolboy
multiplication. You can scan across the numbers and generate the
result a piece at a time, or you can generate each digit of the product
completely. (Product scanning is unusual. The slow verify in my
multiplication demos use it, if you are curious.)

By threading the Montgomery reduction into those methods, the
authors come up with 5 different algorithms to do a big number
Montgomery multiplication. The paper is more concerned with big
numbers for cryptography, but it works just fine for our two word 64 bit
number, although their performance results aren't applicable.

If you read their paper, you'll probably wonder which method to use.
 They pretty much recommend all the methods but for different
purposes.

I found their "FIPS" (Finely Integrated Product Scanning) method to be
the most useful due to a combination of operations count, overhead,
and storage consumption. You may disgree, of course.

For a two word number, the operations work out to:

x=0;
x+=Num1[0]*Num2[0];
Prod[0]=(x * MontConst) % WordSize;
x+=Prod[0]*Prime[0];
x/=WordSize;
x+=Prod[0]*Prime[1];

http://members.tripod.com/careybloodworth/big_montmul.htm (1 of 6) [8/21/2002 1:24:20 AM]

http://members.tripod.com/careybloodworth/contact_me.htm

Big Montgomery

x+=Num1[0]*Num2[1];
x+=Num1[1]*Num2[0];
Prod[1]=(x * MontConst) % WordSize;
x+=Prod[1]*Prime[0];
x/=WordSize;
/* loop 2 */
x+=Prod[1]*Prime[1];
x+=Num1[1]*Num2[1];
Prod[0]=x % WordSize;
x/=WordSize;
Prod[1]=x % WordSize;
x/=WordSize;

With 'x' being a 64 bit number. (This method limits us to 62 bit primes,
so we can have two bits left over for the carries. Not really a problem.)

As expected, it does require 10 multiplications. Integer multiplications,
which are usually slow on most processors.

But the formula can be improved.

First, we need to realize that MontMul allows the top word to have a
different number of bits used than the rest. This means the low half
can be a full 32 bits and the upper word consume only 30 bits. We
don't have to put 31 bits in each. That makes things a lot simpler,
since extracting the high or low word becomes trivial.

The second thing we can do is take a look at the Prime[0] What if we
could get rid of that? It'd get rid of two multiplications. Well... Since
Prime[0] is the low word of our prime, we can't exactly get rid of it.
 Unless by some chance, the low word of our prime is '1'. After all,
multiplication by '1' doesn't need to be done.

And that would leave the 30 upper bits of our prime to actually be
some number. Yeah, we can do that. All we have to do is simply
chose our prime with a low word of '1'. That gets rid of two
multiplications and leaves us with just 8.

Anything else... How about the upper part of the prime... Hmmm....
Not really. It's gotta have some information in it. If we chose our
prime right we might be able to get by with a shift and sub, but that
probably isn't going to be very quick. No quicker than just doing the
multiply.

http://members.tripod.com/careybloodworth/big_montmul.htm (2 of 6) [8/21/2002 1:24:20 AM]

Big Montgomery

So what is that "MontConst" in the formula? Of course, that's the
regular Montgomery multiplication constant we need. But what value
is it? Is it something we can work with.

If you compute the constant for a few 62 bit primes, you notice
something amazing! It's "all bits set"! Due to our decision that all the
primes have a low word of just '1', the constant turns out to be a
genuine constant!

That means we can hadwire it. After all, a multiplication by 'all bits set'
really just means we are negating the other number.

We end up with a 62 bit Montgomery Modular Multiply routine
something like this:

ModInt MontMul(ModInt Num1,ModInt Num2)
{UINT64 Sum,P00,P01,P10,P11,T64;
 UINT32 A0,A1,B0,B1,Prime0,Prime1;UINT32 T;

A0=MONTLOW(Num1); A1=MONTHIGH(Num1);
B0=MONTLOW(Num2); B1=MONTHIGH(Num2);
Prime0=MONTLOW(Prime);Prime1=MONTHIGH(Prime);

P00=MUL64(A0,B0);
P10=MUL64(A1,B0);
P01=MUL64(A0,B1);
P11=MUL64(A1,B1);

T= MONTLOW(-((UINT32)MONTLOW(P00)));
T64=MUL64(T,Prime1);

Sum=P00+T;Sum=MONTHIGH(Sum);
Sum=Sum+T64+P01+P10;

T= MONTLOW(-((UINT32)MONTLOW(Sum)));
Sum=Sum+T;Sum=MONTHIGH(Sum);
Sum=Sum+MUL64(T,Prime1);
Sum=Sum+P11;

if (Sum >= Prime) Sum-=Prime;
return Sum;
}

http://members.tripod.com/careybloodworth/big_montmul.htm (3 of 6) [8/21/2002 1:24:20 AM]

Big Montgomery

Just 6 multiplications. No matter what method we chose to do a
modular multiplication, we would absolutely positively need 4 of them
just to do the basic multiplication itself. Doing the modulo is only
costing us two extra. And there is no messy comparisons etc., like in
the method Mikko Tommila uses with his 64 bit primes.

How well does it run... Well, that'll depend on your C compiler, of
course. (And your processor, of course. A 486 or even a classic
Pentium isn't going to run it well. But there are not many people left
with either of those.)

I had some tests done with various C versions and an asm version on
various systems, and on a Pentium-II an asm vector version came out
to about 40 cycles per MontMul. A C coded version came out with
about 62, and GNU C is infamous for poor 64 bit "long long" code.

That really isn't too bad at all. Jason P.'s super fast vector modular
multiplies for 31 bit primes takes about 16 cycles per prime. That's
about 32-34 cycles for 62 bits worth of work. (That's significant
because Jason's 31 bit modular multiply is the fastest code on the net.
 You'd be hard pressed to find any other 31 bit modular multiply as
fast, much less faster.)

The MontMul assembly is much much *MUCH* easier. Pretty much a
straight translation of the C code, just without the register shuffling that
GNU C likes to do.

Even in C, though, the performance is pretty good. Throw in the
overhead for the other operations, etc., and you are going to have a lot
of trouble finding anything significantly better.

The final conditional normalization can be done straight inline, just like
I mentioned on the Mod math page.

Sum=Sum + ((Sum >> 63) & PRIME)

At this level of performance, memory latencies may very well cost
enough to kill your performance. Overhead for individual operations
will cost too much and you'll have to do everything as vectors just to
reduce the overhead.

And a good thing about this code is that we no longer have to mess
with the FPU. It doesn't matter what precision it is (64 or 80), what
rounding mode, or even whether Windows decides to change it on a
whim, without telling you about it (which can happen!!) (I can't even

http://members.tripod.com/careybloodworth/big_montmul.htm (4 of 6) [8/21/2002 1:24:20 AM]

Big Montgomery

begin to tell you how much I dislike floating point under Windows 9x!
[shudder])

I gotta admit, I'm pretty happy with this kind of code. It's not perfect. It
might not be the fastest. But you'll be hard pressed to find anything
faster. It compares very well with Jason's high performance 31 bit
code. Which was extremely tuned for the Pentium FPU.

It's what I had decided to use in my unfinished v2.7 pi program. (It's
unfinished for other reasons. I was happy with the MontMul.)

By now, you may be wondering how far we can go with this.

For 4 decimals into it and use a single prime, the 'base square' size
will be 26.58 bits. That leaves 35 bits for the pyramid. Allowing 1 bit
for the zero padding, that means you can do 4*2^34=64g decimals.
 And it takes 4*Decimals bytes of storage.

For 8 decimals in two primes, the base will be 53.16 bits, leaving 70
bits for the pyramid. Suffice to say, that's more than you could ever
possibly do....

For 16 decimal, in two primes, the base size is 106.31 bits. Leaving
nothing for the pyramid size.

For 32 decimals in four primes, the base size is 212.61 bits, leaving 35
for the pyramid. Allowing for the zero padding, that means
32*2^34=512g decimals. And it takes 2*Decimals bytes of storage.

You could go to 8 primes, but what'd be the point?

You could modify the MontMul() I show above to handle 63 bit primes,
but you wouldn't be gaining much. Still, if you needed to, you could.
 I'll leave it as an excercise for the reader...[grin]

With a bit of care, you can even use a 64 bit prime if you limit upper
word of the prime to less than 0xFFFFFFF0, it'll still all fit into a regular
64 bit 'long long' integer, although much more care is needed in the
routine, and you have to do the multiplies as high/low halves, etc.

The 62 bit version is simplest, though. And it doesn't require the FPU.

A simple example of the 62 bit MontMul in x86 assembly is available
on the download page.

http://members.tripod.com/careybloodworth/big_montmul.htm (5 of 6) [8/21/2002 1:24:20 AM]

Big Montgomery

http://members.tripod.com/careybloodworth/big_montmul.htm (6 of 6) [8/21/2002 1:24:20 AM]

Other ModMul

 Home Page

 SiteMap

 Download page

 Feedback form

Mod math

ModMul
33-64 bits
Montgomery

Other ModMul

Other ModMul

Other than the stuff I've mentioned for word size primes, and for 33-
64 bit primes, and for general Montgomery ModMul, there aren't many
useful options left.

Your only options left are

1) Just tolerate it.

2) Find some special prime that you can work with efficiently. Sort of
how the 64 bit primes were done.

3) Use a Mersenne Prime with a FGT. At least then the modulo is
easy. The FGT isn't the best algorithm, and the selection of Mersenne
primes is a bit limited.

4) Use a special Discrete Weighted Transform multiply to
automatically do the modulo. A lot of overhead. Only suitable for
really big primes.

5) Use some smaller prime!

Number four sounds interesting.... This is a variation on Crandall's
regular DWT. Colin Percival came up with it and described it to me. I
never did implement it, though.

I seriously thought about it, but while running a bunch of 'theoretical
timings tests', which I counted the operation count for various sized
transforms using various ideas and potential optimizations (a lot
quicker than writing the code and spending weeks tweaking it!) I
realized that it still suffered the same problem as a regular wide NTT.

Remember, the effort to do a wider data element grows faster than the
savings of having to do a shorter NTT. Even though the DWT uses a
FFT, it still has a growth of O(N*Log2(N)) For small 'N' (like the DWT
would use), the growth is pretty substantial. On the other hand, for
long 'N' (like our total NTT length) grows / reduces rather slowly.

The effect is the wider you make the data, the slower the program will
run.

Plus, there is extra overhead in doing a DWT modular multiply.

http://members.tripod.com/careybloodworth/other_modmul.htm (1 of 2) [8/21/2002 1:24:27 AM]

http://members.tripod.com/careybloodworth/contact_me.htm

Other ModMul

Realistically, though, there is little reason to use anything beyond a 62
bit prime because with the Chinese Remainder Theorem we can
always build up the NTT result as wide as we need.

http://members.tripod.com/careybloodworth/other_modmul.htm (2 of 2) [8/21/2002 1:24:27 AM]

Special Primes

 Home Page

 SiteMap

 Download page

 Feedback form

NTT

Mod math
Special

Primes
Wide NTT
Multi-prime

Special Primes

You may wonder what kind of primes are "special".

Well... The key requirement for a NTT is that it has a Nth root of unity.
 So that means it has to be at least as large as the length of the
transform you are wanting. Makes sense.

There are a few other conditions that I wont discuss, but it ends up
that we have to use a prime of the form:

1+K*2^x

So our prime has to be some multiple of some power of two, plus
one... Not too difficult. Obviously 2^x will be at least as big as the
length of the biggest transform we are going to do, so we just loop
though K's and check for primality.

Of course, since 2^x in the prime must be at least as large as the size
of the transform we are doing, that puts a few restrictions on the size
of the primes, how many primes, etc.

Once we've found our prime we need a "Primative Root of Unity". A
"primative root" is just a fancy way of saying that when you raise it to a
power, it just goes through all of the numbers. Without degenerating
into some constant.

That's a little more difficult to compute than the prime itself.

Factor (Prime-1) into its parts. We then compute

R^((Prime-1)/Factor) != 1 Modulo Prime

for all the factors of (Prime-1) computed above.

If we find any value of R that passes those tests, then it's a primative
root. You can just try R=2, 3, 4, 5,.... and you'll find one fairly quickly.

If you want to be absolutely sure, ModPow(PRoot,Prime-1) should be
'one'. And if you really, really want to be sure, just loop through the
entire range, and Prime-1 should be the only one equal to 'one'.

Here's an old program that I wrote to find these primes. It's pretty

http://members.tripod.com/careybloodworth/special_primes.htm (1 of 2) [8/21/2002 1:24:39 AM]

http://members.tripod.com/careybloodworth/contact_me.htm

Special Primes

simple. It's not the fastest, but it's a one time computation so it doesn't
matter. It computes the primes, the root and the inverse.

Download page.

http://members.tripod.com/careybloodworth/special_primes.htm (2 of 2) [8/21/2002 1:24:39 AM]

Wide NTT

 Home Page

 SiteMap

 Download page

 Feedback form

NTT

Mod math
Special Primes

Wide NTT
Multi-prime

Wide NTT

By 'wide' NTT I mean do it where the prime number is big enough to
hold everything you need.

This may be 128 bits or 256 bits or a thousand bits, etc. Just some
size that is greater than what you can do with the built in math in your
CPU.

Well... my advice is DON'T.

The problem with doing wide transforms is that it's harder to do the
math. The add, the subtract, and espeically the multiply and modulo.

Sure, it sounds good. Just do the data wider. But how are you going
to do that wider modular multiply?

The wider the multiply, the more effort it takes. The same thing
applies to small scale stuff like this as it does to really big multiplies
like these entire pages are talking about.

How are you going to efficiently do the multiply? Sure, it's only a 'few'
bits, but it still takes a lot of effort.

That amount of effort grows quicker than any savings you might get
from doing a shorter transform.

For example, let's assume we use a small FFT to do the modular
multiply. (For small sizes, a regular schoolboy would be faster, but I'm
talking general growth here, and a FFT would have a smaller growth.)

Let's also assume you can instantly load the data and extract the
results (which is certainly not going to be true). The growth would be
the standard O(N*Log2(N)) of a FFT.

If you've ever computed the growth for a variety of 'N', you'll notice that
small sizes grow much faster than the larger ones do.

The effect is that because of the modular multiplication, the cost of
doing a wider NTT grows faster than the savings gained by having to
do a shorter NTT.

Even with various optimizations, such as using Colin Percival's DWT

http://members.tripod.com/careybloodworth/wide_ntt.htm (1 of 3) [8/21/2002 1:24:47 AM]

http://members.tripod.com/careybloodworth/contact_me.htm

Wide NTT

method, and using a hardwired FFT with no loop overhead, etc. etc.,
the growth of the small FFT will be that above.

If you actually implement this, you will find a "sweet spot" where extra
cost of the wide modmul balances the savings of the shorter NTT.
 The exact point will depend on your coding skills.

Based on the theoretical operations counts I did, it would probably be
somewhere between 32 and 128 decimals. Say 64 just for the sake of
discussion. Below 32 and the cost of doing the FFT is too great.
 Above 128 or so and the growth has likely outweighted the savings of
the shorter NTT and your efficient coding skills.

For the smaller sizes, you could use some other multiply and do the
modulo the hard way, but that too takes time.

For that size, frankly, we can do a multi-prime NTT with a comparable
amount of effort, if not less effort.

When I first learned about doing a wide NTT with the DWT, I was real
excited about the possibility. However, the theoretical costs and
actually trying to implement it was disappointing. Loading the data
into the FFT, doing the DWT scaling, doing the hardwired optimized
small transform, doing the DWT inverse scaling, releasing the
carries... All of that takes time.

And I'm not that good of a coder. Even being optimistic, there was no
way I could get it to perform as well as other methods. Your coding
skills may be better.

Everything that I've experienced says that things run most efficiently
when the data types are closest to what the processor can handle.
 That means 32 bit integers, floating point types, and sometimes 64 bit
integers (even on a 32 bit computer).

About anything larger than that is going to have too much overhead.

Except for a few special situations, my advice is to not do a 'wide'
transform. Do a multi-prime transform instead.

But, if you want to see an example of a very simple version, I've got
one in my multiplication demos on my download page.

http://members.tripod.com/careybloodworth/wide_ntt.htm (2 of 3) [8/21/2002 1:24:47 AM]

Wide NTT

http://members.tripod.com/careybloodworth/wide_ntt.htm (3 of 3) [8/21/2002 1:24:47 AM]

Multi-prime

 Home Page

 SiteMap

 Download page

 Feedback form

NTT

Mod math
Special Primes
Wide NTT

Multi-prime

Multi-prime
CRT

I guess the first question you have is why should you do a multi-prime
transform. Doesn't it take more effort and more time?

Well, yes it does take more effort. Quite a bit more. It might even take
a little assembly to do it efficiently.

So why do we want to do it? Two reasons. First, by putting more
digits into a NTT element, we can cut the memory consumption in half.
 That can be pretty important. Second, it's easier to do several
transforms with narrower data than it is to do one with wide data. (In
other words, it's easier to work with 32 bit data than it is 64 bit data.)

But it doesn't have to take more time. In fact, it may be slightly faster.

If you just do a wider transform (either by multiple primes or with a
wider prime), then it's going to take more time. If it takes 1 minute to
do something, then doing two of them will take 2 minutes. If you
double the width, it's going to take at least twice as long. It's just
common sense.

But, you don't have to do the exact same size transform. Remember
in the parent page, I gave the example of increasing the number of
digits per element? Well, that's the key to doing a multi-prime NTT.
 You increase the number of digits and the number of primes, rather
than just one.

If we put twice as many digits into each NTT element, then that means
the transform is only half as long. So each one is twice as fast. But
since we have to do twice as many transforms, it evens out.

So, how can we use multiple primes to do a NTT???

We take advantage of the Chinese Remainder Theorem.

As you may know, the CRT allows you to combine several modular
numbers (like we are already using) and get the same answer as if we
had done it with a much larger modular number.

The basics are really not hard.

http://members.tripod.com/careybloodworth/multi_prime_ntt.htm (1 of 3) [8/21/2002 1:24:54 AM]

http://members.tripod.com/careybloodworth/contact_me.htm

Multi-prime

In the parent NTT section, I gave the example of putting four decimals
into each NTT and using a 64 bit prime.

In this example, I'm going to say 16 decimals and four 32 bit primes.
 (Why 32 bit primes? Simple... because they are easier to work with
on a 32 bit computer! I could use two 64 bit primes.)

Here are the following steps:

For each prime, modulo each group of 16 decimals and put it
into the NTT.

For each prime, perform a forward NTT.

Repeat steps 1 & 2 with the second number to multiply.

For each prime, do a convolution between the two transformed
numbers.

For each prime, do an inverse NTT.

For each element in the four transform, do a CRT over those
four data items. You'll get a 128 bit answer (in this example) out of
the CRT.

Release your carries from the 128 bit wide data.

The problems with doing a multi-prime NTT are doing the last two
steps. The wide CRT and releasing your carries from the wide data.
 That often requires some assembly to do it efficiently. (At least on the
register poor x86.)

Some demonstration code is available on the download page.

One of the reasons to use a multi-prime NTT is so you can use
smaller primes. You don't need to work with enormous numbers.
 Well, there is a disadvantage to using small primes. Such as 31 & 32
primes. Namely, their small size!

Yeah, that's right. Their small, easy to work with size is both an
advantage and a disadvantage.

http://members.tripod.com/careybloodworth/multi_prime_ntt.htm (2 of 3) [8/21/2002 1:24:54 AM]

Multi-prime

The disadvantrage is in the size of the transform they can do. After
all, their root depends upon the power of two they are based on. And
with smaller primes, there is a very definite limit to how big that can
be.

If you use the 8 largest 31 & 32 bit primes, you can put 32 decimals
into each element and multiply a billion decimals. That's as far as you
can go. The length of the transform depends on the what the prime is
built on, and those 8 primes have reached their limit. You can't add
more primes (such as doing a 16 prime NTT) because there aren't any
more.

You've reached the limit of the 32 bit integers.

If you want to go beyond that, you'll have to use larger primes. No
way around it. How much larger will depend on which approach you
chose. Like I discuss in the Mod Math section, there are several sizes
to chose from and several ways to do the modular multiplication.

http://members.tripod.com/careybloodworth/multi_prime_ntt.htm (3 of 3) [8/21/2002 1:24:54 AM]

CRT

 Home Page

 SiteMap

 Download page

 Feedback form

Multi-prime

CRT

CRT

Doing a Chinese Remainder Theorem is not all that hard. The hard
parts are:

Dealing with the short multi-precision math.

Deciding which one to use

Discovering a few items that are 'obvious' but are not always
clearly mentioned.

Let's take the first point... Well, if you are needing this, then you
probably already know the basic algorithms and can easily code a few
simple big integer routines. If you are lucky enough to have a
compiler that generates good code, you may be done. If you are like
the rest of us, you may need to write a few core routines in assembly.

The second point is deciding which CRT to use. Knuth mentions two,
and another is described in Mikko Tomilla's APFloat package and in
Joerg's HFloat.

Personally, I prefer to use the plain one Knuth describes. It's fairly
easy to implement and runs tolerably well.

The formula he gives is:

v[1]=u[1] mod M[1]
v[2]=(u[2]-v[1])c[1][2] mod M[2]
v[3]=((u[3]-v[1])c[1][3] - v[2])c[2][3] mod M[3]
....
v[r]=(...((u[r]-v[1])c[1][r]-v[2])c[2][r]- ... - v[r-1])c[r-
1][r] mod M[r]

And then to combine them:

u=v[r]*M[r-1]*...*M[2]*M[1]+ ... +v[3]*M[2]*M[1] + v[2]*M[1]
+ v[1]

And the constants are done with:

C[I][J] = 1 (modulo m[J])

http://members.tripod.com/careybloodworth/crt.htm (1 of 3) [8/21/2002 1:25:00 AM]

http://members.tripod.com/careybloodworth/contact_me.htm

CRT

The first part of the alogrithm is just simple modulo math. Simple stuff.
 It can be done with just a couple of nested loops using the same
modular math that your NTT etc. uses.

The second part, where we combine the answer into the whole, is the
only part where we have to work with 'big integer' math for the CRT.
 Multiply a BigInt by a ModInt, add two BigInt's. Not too difficult.

But how do we compute those constants? Some magic constant for
index I & J times prime I is congruant to 1 modulo prime J. Hmmm...

That's really just a fancy way of saying: "while working modulo
Prime[J], find the inverse of Prime[I] and that's constant[I][J]

Of course, finding the multiplicative inverse is easy. We do that for the
NTT anyway because we need to find the inverse of NTTLen so we
can normalize our answer. (You can also use an Extended GCD to
compute it.) So it's just a matter of having two loops and finding all the
inverses for all combinations of I and J.

Now, what did I mean by that third point, where I said "discovering
'obvious' stuff"?

Well, with the Knuth CRT I'm describing, the primes have to be in
ascending order.

For the CRT that Mikko Tomilla uses, you need to normalize the CRT.
 It can actually be greater than the product of your primes. So when
you get done, you need to modulo it by the product of your primes.
 That's a little awkward, plus you need extra bits in the CRT storage to
hold that overflow.

Or you can do it as you compute the CRT. You'll only need 1 bit extra.

Either way, it does take a little extra time, which is why I prefer the
Knuth version.

There are other styles of CRTs, of course. Feel free to experiment.

With a simple impementation like I'm showing, it does have a growth
of O(N^2) (for the CRT width, not for the NTT's length), but since we
are working with CRT lengths of only a few elements, it's no big deal.

http://members.tripod.com/careybloodworth/crt.htm (2 of 3) [8/21/2002 1:25:00 AM]

CRT

The CRT will need to be done for every set of NTT elements, so it
needs to be reasonably efficient.

http://members.tripod.com/careybloodworth/crt.htm (3 of 3) [8/21/2002 1:25:00 AM]

Galois

 Home Page

 SiteMap

 Download page

 Feedback form

FFT Types

Floating point
NTT

Galois
Symbolic

Galois

Ahh.... The Fast Galois Transform.

It's kind of cute, although it has little to offer that a NTT can't do.

A FGT is a cross between a FFT and a NTT. The FGT uses the real /
imaginary pair of a 'complex' FFT and the modular math of a NTT.

We do put the data into the FGT array differently, and we don't need to
do a Complex / Real wrapper, the convolution is more difficult, and we
get the data out in a different order, but all in all, you write the
transform itself as expected.

I said the FGT has little to offer that a NTT can't. There are two things
it has to offer.

First, a FGT can use Mersenne primes. What's good about that is the
'all bits set' nature of a Mersenne prime makes it easy to do the
modulo. (The FGT can use other primes, but Mersenne primes may
be easiest to work with.) You still have to do the multiplication itself,
but at least the modulo is easy.

Second, with the primes used in a FGT, we can do a split-radix
transform because we can now represent sqrt(-1). Of course, this isn't
that big of a deal since the 'complex' math of a FGT results in it
needing more modular multiplies than a NTT.

If you are lucky, the faster ModMul() offsets needing to do more of
them, but that's not likely.

Richard Crandall's paper on FGT's is available on the download page.

Simple example code is also available on the download page.

Note the difficulty we have doing the convolution.

http://members.tripod.com/careybloodworth/galois.htm [8/21/2002 1:25:13 AM]

http://members.tripod.com/careybloodworth/contact_me.htm
http://www.perfsci.com/

Symbolic

 Home Page

 SiteMap

 Download page

 Feedback form

FFT Types

Floating point
NTT
Galois

Symbolic

Symbolic
Schonhage-Strassen | Nussbaumer | SS vs. Nuss | Schonhage

A 'symbolic' transform is one where you don't do the multiplication in
the butterfly.

Sounds pretty good, doesn't it? After all, if you've read the sections on
the FFT limitations, the NTT, multi-primes NTT, the CRT, etc. etc., the
big problem doing a fast big multiplication is to efficiently do the
multiplication in the butterfly, and do it all without anything overflowing.

Without the cost of doing the multiplications, we can make the
elements as big as we need and do any size multiplication without
worry.

Except, of course, for the not so small fact that reality doesn't like for
us to get a 'freebie'.

There are some costs involved. Enough costs that it may very well be
better to go ahead and mess with the problems of all the other
multiplication methods instead of doing this kind. The symbolic
transforms actually expand the amount of data, so the convolution
ends up being more expensive. All in all, it ends up that theoretically
you end up with a multiplication routine that slightly lower growth than
with a regular FFT or NTT.

The oldest form of symbolic transform in a multiplication is the
Schonhage-Strassen multiplication. This was developed in 1970, just
two years after the floating point method was discovered, and just
eight years after the Karatsuba method was descovered. This method
works only with binary numbers.

The other form is Nussbaumer, or Nussie as I like to call it (in honor of
the imaginary monster of Scotland's Loch Ness, which is often called
'Nessie'.) It's laid out a bit differently than Schonhage-Strassen, but
it's been shown to 100% equivelent. The difference is that Nussie is
much more flexible. First, it can work with any base, not just binary. It
can be structured several different ways. The bad parts is that it takes
too much memory and isn't very cache friendly. (Although with effort,
both of those can be reduced.)

A third kind is, well, I guess you could call it just plain Schonhage.
 Frankly, it's extremely similar to the Schonhage-Strassen I mentioned

http://members.tripod.com/careybloodworth/symbolic_fft.htm (1 of 2) [8/21/2002 1:25:32 AM]

http://members.tripod.com/careybloodworth/contact_me.htm

Symbolic

above except this works in any base, not just binary.

http://members.tripod.com/careybloodworth/symbolic_fft.htm (2 of 2) [8/21/2002 1:25:32 AM]

Schonhage-Strassen

 Home Page

 SiteMap

 Download page

 Feedback form

Symbolic

Schonhage-
Strassen
Nussbaumer
SS vs. Nuss
Schonhage

Schonhage-Strassen
Schonhage-Strassen 2

Before you read this, you should be familiar with the NTT. Schonhage-
Strassen is a NTT. Just a special kind. A "symbolic" NTT.

Okay. I guess you really do want to hear about SS.

(Please note. The version of Schonhage-Strassen that I'm showing is
slow because it's designed that way. It was written for simplicity and
as an example, rather than speed.)

Depending on your resources, you may have trouble finding decent
documentation on SS, or even working examples. For most of us, the
only things you are likely to find is Donald Knuth's Vol2 of "The Art of
Computer Programming" (1st edition), the GMP math package (GMP)
and Bruno Haible's CLN math package.

They all do the Schonhage-Strassen multiplication, but they do it
differently. They all share the basics, of course. (Namely that of
organizing the FFT so that the roots are easy to do. Just shifts,
basically. (Actually, since it uses modular math, it's a NTT.) Plus,
they all work only with binary data. Unlike a NTT or Nussbaumer.)
 But the actual implementations are a bit different.

First is what D. Knuth presented in the first edition of his "The Art of
Computer Programming, Volume 2: Semi-Numerical algorithms". This
puts the data in like normal, does a NTT multiply. There are two
unique points, though. First is it uses two NTT multiplications. The
normal wide one (using the special prime and root), and a tiny one
holding just a few bits per element. Then a special, simple, hardwired
CRT is done to combine the two into the full answer. The second part
is that it pre- and post- processes the data. It scales it, much like how
the 'Right Angle' FFT does. (ie: it appears to be a Discrete Weighted
Transform.)

The second version is what is used in the GMP v3.1.1 math package.
 It does only one (the wide) NTT. It too does the scaling.

The third version is what Bruno Haible has in his CLN math package.
 It too only has one NTT, but it doesn't do any scaling.

Just to confuse things a bit... When I got my first version working, it did
two NTTs & the CRT, but didn't do scaling.

http://members.tripod.com/careybloodworth/schonstras.htm (1 of 4) [8/21/2002 1:25:38 AM]

http://members.tripod.com/careybloodworth/contact_me.htm

Schonhage-Strassen

All four possible combinations.

(Then, on top of that, D. Bernstein implies there is another version...
 Where as most versions are negacyclic, he says there is also a
regular cyclic version. I don't have any information on that style.)

But I'm going to try and start simple. I'm going to do mostly like Knuth,
but I'm going to keep it simple. Only add complexity when needed.

Let's start at the bottom and work our way up. Let's relate it to what
we already know, such as a plain NTT multiplication. The differences
are:

The number of bits put into each Schonhage NTT element
depends on how many total bits there are. A regular NTT uses a
fixed number of bits.

We use a 'prime' of 2^X+1, where as a NTT uses y*2^X+1.
 The Schonhage-Strassen choice of 'prime' isn't really a prime, but
in this case it doesn't matter.

The roots are based on a power of two. This makes the
'multiply by the trig' in the NTT relatively easy to do.

The result may be 'negative' and needs to be normalized.

There are, of course, some special conditions. For example, the NTT
length has to be less than the number of bits you put into each NTT
element. But, essentially, SS is like a NTT

So, my first version did it as a NTT. (As two NTT's, like Knuth
describes.) To get the basic framework working, I used plain ordinary
negacyclic schoolboy multiplications.

I split it up like:

TotalBits = N =NumLen*2*Log2(BASE);
 n=Log2(N);
BitsPerGroup= L =Pow2(Log2(TotalBits) / 2);
l=Log2(L);
NTTLen = K =TotalBits / L;
 k=Log2(K);

http://members.tripod.com/careybloodworth/schonstras.htm (2 of 4) [8/21/2002 1:25:38 AM]

Schonhage-Strassen

// NTTLen <= BitsPerGroup*2

PBits=BitsPerGroup*2;
RootExp=PBits/NTTLen; /* 2L+1-K */

The N, n, K, k, L, and l vars are the vars that Knuth uses to describe
stuff. Lower case is the number of bits (ie: var=Log2(Var)) Since
Knuth always chooses such terrible variable names, I used things that
were a little more descriptive, but left his in during development. I'm
showing them here so you can relate to them if you read his text or
some poorly programmed implementation from some schmuck who
also thinks variables must be single letters.

TotalBits is the total number of bits in our answer.

BitsPerGroup is the number of bits I put into each element of the NTT.

NTTLen is obviously the length of the transform we'll be doing.

PBits is the number of bits each NTT/SS element will be. Our prime
will be 2^PBits+1

The RootExp is the exponent of our root. It'll be 2^(2*RootExp)

I choose to make NTTLen as large as possible, by doing it with that
division. This is supposedly the most efficient. However, there is no
requirement that you do it like that. It can be shorter. Or even a
constant.

After that, the basic SS multiplication is the same as a NTT, except we
compute the roots a little differently.

KRoot=2^RootExp;
if (Dir > 0) w=ModIPow(w,KRoot,Len/Step,ModWords);
else w=ModIPow(w,KRoot,Len-
Len/Step,ModWords);

Not really all that different, but a little. The inverse just means we end
up dividing, instead of multiplying. But since you can't easily divide,
we arrange it as the multiplicative inverse. Like a standard NTT.

And, of course, as I said, we do that small secondary multiplication
modulo NTTLen. (Remember, I did it like Knuth talks about.)

http://members.tripod.com/careybloodworth/schonstras.htm (3 of 4) [8/21/2002 1:25:38 AM]

Schonhage-Strassen

That secondary negacyclic multiplication is done modulo NTTLen and
its length will also be NTTLen, so it'll always be working with fairly
small data. You can do that fairly easily several different ways. A
simple, niave 64 bit NTT would work fine for just about any size you
need. Performance isn't critical since the length is so small. The end
result will be modulo'ed NTTLen.

We then use a simple hardwired CRT to combine the two.

Sum=Prime*((SmallMul-BigMul) % NTTLen) + BigMul;

See, not hard.

The final thing is that Sum might be 'negative', so we need to
normalize it. (The index is 'x')

if (Sum >= (x+1)*2^PBits) Sum=Sum-Prime*NTTLen

And that's pretty much it for a *basic* style.

You can take a look at SS1.C in the multiplication demos collection on
my download page. This version is not, repeat NOT designed for
speed. It's designed to try and be readable, so you can have some
idea of what's going on. (Which kind of makes sense, since the
purpose of this entire web site is to demonstrate basic multiplication,
rather than just giving you finished, working high performance code
that you wouldn't understand.)

Improvements are on the next page...

http://members.tripod.com/careybloodworth/schonstras.htm (4 of 4) [8/21/2002 1:25:38 AM]

Schonhage-Strassen 2

 Home Page

 SiteMap

 Download page

 Feedback form

Schonhage-Strassen

Schonhage-
Strassen 2

Schonhage-Strassen 2

If you try the example program SS1.C, you'll see it doesn't perform
well. It runs about as fast as a dead dog.

Partially that's because the modular math package is so simplistic. It
was not designed for performance. In particular, the modular
multiplication method works a single bit at a time. Very simple and
slow.

The big problem, though, is actually the Schonage-Strassen
implementation itself. SS1.c was explicitly designed to show the
similarities between it and a regular NTT.

Remember I previously said that SS arranges things so the 'mul by
trig' in the NTT are based on powers of two, which are simple shifts...

Well, the SS1.C version doesn't take advantage of that. In fact, it
can't.

So, first and foremost, we need to arrange things to get rid of explicit
slow multiplications and do "fast multiplications".

And how do we do the fast multiplication? Simple, really. Our
numbers are in binary and we are multiplying by a power of two.
 Since 2^x+1 means we are doing negacyclic multiplication, we just do
the shift and then subtract the high part (the overflow) from the shifted
low part.

If our binary number was:

abcdefgh

and we multiplied by 8 (2^3, shift by 3) we would have

abcdefgh000

Doing the modulo is:

defgh000-00000abc

And that takes care of the forward transform. With this ModMul2Exp()
style routine, we can do the forward transform with no multiplications.

http://members.tripod.com/careybloodworth/schonstras2.htm (1 of 5) [8/21/2002 1:25:42 AM]

http://members.tripod.com/careybloodworth/contact_me.htm

Schonhage-Strassen 2

The inverse transform is a little more difficult.

If you dump the trig values used in the NTT, you'll see that the inverse
transform has to work with data like:

0xffff...fff0000...00001

That's a little more difficult to work with. What is that value? Well,
actually, it's the multiplicative inverse of the power of two that we used
in the forward transform. Previously we multiplied, and now we need
to divide those values out.

We can deal with this two ways.

First, we can just go ahead and do the "division". Now that we know
what kind of values we are dealing with (and they have a nice pattern
to them), we can write a specific routine to do it. My routine
ModDiv2Exp() does it with just a couple of shifts, and add and a
subtract. Nothing really hard. But it is a little more time consuming
than the forward transform. We have to do it with every single
butterfly.

(Division by two isn't hard, provided you know in advance that it wont
have a remainder. You multiply it by (Prime+1)/2 Which for the SS
primes, works out to just two bits. A shift, an add, and a modulo
(which is a shift and a subtract.) It's fairly obvious how to extend it to
multiple powers of two.... This works for any Prime, not just 2^x+1)

And that brings us to the second possibility. We can 'scale' the data
and then both the forward and inverse transforms will be the same.
 With the same nice, simple power of two multiplication. This is how
Knuth describes it.

The scaling involves the value of 2^RootExp. (The NTT root that we
use is the square of this.) You just scale each element by
(2^RootExp)^x, assuming 'x' is the array index. A nice simple power of
two multiplication.

The inverse scalling is a little more difficult. And it has a catch.

First, we need to swap the array ordering. It's backwards. Although
element 0 is in place, the rest of them are swapped with Len-x. We
just need a simple loop to do that. Or we could even leave it the way it
is, and just change how we later index our answer.

http://members.tripod.com/careybloodworth/schonstras2.htm (2 of 5) [8/21/2002 1:25:42 AM]

Schonhage-Strassen 2

Second, we need to divide it by the same scaling factor we used
before. Not hard. Just a simple call to ModDiv2Exp(), just like what
we would be doing in the NTT if we weren't using scaling. The
difference is the scaling will make just one pass over the data doing
the "slow" division, where as if we did it in the inverse NTT, we'd have
to do it throughout the full NTT.

Either way, you'll need to do a little bit of extra effort for the modular
multiplications when doing the inverse. It's not hard, but it's not quite
as easy as with a single bit. It's up to you. Either way, the
Schonhage-Strassen algorithm works.

The next area of improvement concerns our root. A lot of times, the
low level root will be something like 2 or 4 or 16 or something small.
 The problem with that is to do a multiplication like that involves a lot of
shifting. Computers prefer to work with full words.

The solution isn't hard.

After the area where we compute our constants, we just check to see
if RootExp is a multiple of our word size. If it's not, we divide the
NTTLen by 2 (or multiply BitsPerGroup by 2), recompute the rest of
the vars, and check it again. It'll only take a couple of loops through it
to get it to a nice, convenient size. Sure, it'll hurt the 'theoretical best'
performance a little, but the reality is that working with full words is so
much more convenient that it's well worth the effort.

It's also good to make the prime size (PBits) a multiple of the word
size. Makes the modulo part easy to do without shifting. If you are
doing numbers that are a power of two, (like the FFT likes), then you'll
already have this. (And, of course, if you need to do a multiplication
that isn't a power of two, Dr. David Bailey's paper (on the download
page) gives a very simple way to fake it and still get good
performance.)

However, even if you don't want to do this, and you end up shifting, it's
not really all that hard or time consuming. Especially not when
compared to doing a genuine modular multiplication.

Of course, we can also do the final normalization with the
MulDiv2Exp() routine, instead of computing the multiplicative inverse
of NTTLen. This way we can get rid of that function completely. Many

http://members.tripod.com/careybloodworth/schonstras2.htm (3 of 5) [8/21/2002 1:25:42 AM]

Schonhage-Strassen 2

people prefer to do a DivBy2 on each element during the inverse
transform itself, but I always prefer to wait and do it all at once.

The last area is whether to do just one NTT or two, like Knuth
describes.

If you increase the width of the NTT elements to handle those few
extra bits, you actually end up increasing the width by a *LOT* The
number of bits in each NTT element has to be a multiple of your
transform length, else the 'power of two' roots don't work.

If you do the 'prefered' size of the transform vs. bits per element, you
end up doubling the number of bits in each element. Obviously this is
unacceptable!

However, if you limit the length of the transform, the extra bits in each
NTT element will be a lot less.

You end up doing something like:

TotalBits = N =NumLen*2*Log2(BASE);
 n=Log2(N);
NTTLen = K =16;
 k=Log2(K);
BitsPerGroup= L =TotalBits/NTTLen;
 l=Log2(L);

PBits=BitsPerGroup*2;

PBits+=(2*Log2(TotalBits));
if (PBits % NTTLen) PBits=((PBits /
NTTLen)+1)*NTTLen;

At this point I don't know whether that's really a good idea or not. My
"gut feeling" is that it's not a good idea. That although you've made
things simpler by only needing to do one transform, you've paid for it in
longer run time and slightly more storage consumption. This is
especially true for larger multiplications, where the extra storage and
computation of the short single transform is significantly greater than a
more balanced approach.

It might depend on the implementation, though.

http://members.tripod.com/careybloodworth/schonstras2.htm (4 of 5) [8/21/2002 1:25:42 AM]

Schonhage-Strassen 2

Speaking of which.... Included in the multiplication demos on the
download page is SS2.c It's a bit improved over SS1. It's gotten rid of
the multiplies and now does shifts and a few other improvements.

HOWEVER, it's still not a high performance program. The modular
math package I'm using is just not very efficient. It was written for
simplicity and to be generic.

Also, a good Schonhage-Strassen implementation should do the
convolution much, MUCH more efficiently. I'm just calling the standard
(slow) ModMul routine, but you should actually recurse until your
Schonhage-Strassen multiply routine is working with numbers small
enough it can multiply directly. (Like how Nussbaumer and Karatsuba
both do.)

But, as I said, the math package I'm using isn't written very efficiently.

In spite of that, though, all the basics for a fast Schonhage-Strassen is
there. And it's public domain.

http://members.tripod.com/careybloodworth/schonstras2.htm (5 of 5) [8/21/2002 1:25:42 AM]

Nussbaumer

 Home Page

 SiteMap

 Download page

 Feedback form

Symbolic

Schonhage-
Strassen

Nussbaumer
SS vs. Nuss
Schonhage

Nussbaumer
Example Nuss

Nussbaumer is a cool algorithm. Not very useful but interesting none
the less.

Nussbaumer convolution was discovered by Henri J. Nussbaumer in
1980. A description of it can be found in Donald Knuth's "The Art of
Computer Programming", volume 2, 3rd edition, section 4.6.4,
excercise 59. (Although as usual, Knuth makes it sound much much
more difficult than it really is. He's a decent mathematician, but he's
not much of a programmer. He's never learned the art of writing,
which involves making things readable and understandable. An
excellent example is that of doing a FFT. Rather than describe it like
most people, he'll go into nit-picking details of one specific way to do it,
totally obscuring the details. By the time you get finished reading it,
you may have forgotten he was describing a FFT.)

The 'trick' to Nussbaumer is that the butterfly multiplications are done,
except that it ends up being a shift. To do that, the data is pre-
processed. To put it simply, it is zero padded so its length doubles.
 This is one of its problems because that doubles the amount of
memory required.

Another aspect of Nussbaumer is that it's a "negacyclic" multiplication.
 What that means is that it inherent gives an answer where the high
half has been subtracted from the low half. That's one of the reasons
Nussie needs to zero pad its own data. (In addition to the zero
padding you've already done.)

Nussbaumer is composed of two parts.

The first part is the cyclic<->negacylic wrapper. In other words, with
some clever math it converts a negacyclic multiplication into a regular
cyclic one. This can be ignored as long as you are simply willing to
accept the extra memory involved in calling the main nussbaumer
routine directly. And the slightly larger growth rate. This is totally
seperate from Nussbaumer. You can use it or Nussbaumer's
negacyclic part by itself.

The second part is the main nussbaumer routine. This does the
processing of the input data, does the symbolic forward transforms on
the data, does the convolution, does the inverse symbolic transform,

http://members.tripod.com/careybloodworth/nussbaumer.htm (1 of 4) [8/21/2002 1:25:52 AM]

http://members.tripod.com/careybloodworth/contact_me.htm
http://members.tripod.com/careybloodworth/example_nuss.htm

Nussbaumer

and then post-processes the data. It's a full multiply routine all by
itself.

Understanding Nussbaumer's operation is not that hard, actually.
 Although it is a little complicated, the basics are pretty much the same
as most FFT multiplications. It's just the implementation that's a little
odd.

As far as the main Nussie convolution routine is concerned, it is a full
multiplication routine all by itself.

It takes the data and zero pads it.

It rearranges the data into a square matrix (like the 2/4/6 step
does.) Actually this step is optional. All it does is make the rest of
it slightly more effiicient.

It does the symbolic forward transform. The transform is done
almost as if you were doing a bunch of parallel transforms. (Unlike
a 2/4/6 step's matrix where transforms are done both horizontally
and vertically, Nussie does just one direction.) The catch is that
each butterfly contains a "twist". That's the equivelent to the
multiplication in a normal FFT butterfly. The difference is that the
'twist' shares data between the 'parallel' transforms. So you can't
really do parallel transforms. It can be done in vector, though.

For each row, it does 'something' to get the negacyclic
product. I say 'something' because how that is obtained doesn't
matter to the routine. It's generally done as a recursive call to
Nussie itself (stopping when the length gets short enough to do
explicitly.) That's how the official algorithm does it, and how it gets
the operation count it has. However, as far as the routine itself is
concerned, it doesn't matter how. You could use any method,
such as a 'schoolboy', 'Karatsuba', or even a regular FFT mul. (In
fact, it's actually a good idea to use some other method for the
smaller sizes. That removes a lot of overhead.)

You do the inverse symbolic transform.

You combine the seperate parts into a single answer that gets
returned as the negacyclic product.

http://members.tripod.com/careybloodworth/nussbaumer.htm (2 of 4) [8/21/2002 1:25:52 AM]

Nussbaumer

Of course, Nussie is very versitile.

It doesn't care how the negacyclic sub-products are obtained.

The matrix can be done either vertically or horizontally, with
the twists being done horizontally or vertically.

The transforms can be done several different ways. Regular
iterative, recursive, or even as a 2/4/6 step. (Although the 2/4/6
step is more complicated this way, and it doesn't have its normal
benefits of being cache friendly.)

There are a few additional points you need to know.

The data type must be signed.

The output data type needs to be twice as big to hold the
product pyramid. That's to be expected of course, but worth
mentioning.

The only explcit multiplications are the convolution itself. The
transforms shift the data.

Because of its recursive nature and each level increasing the
size of the data, in a real sense Nussie spreads the data out.
 What I mean is, a regular FFT makes multiple passes over the
same data. Nussie makes just a few passes over that data and
then spreads it out. All that extra spreading is why Nussie still
requires O(N*Log2(N)) multiplications, even though its symbolic
FFTs don't require any multiplications. All those multiplications
come from the convolution working with larger data.

Nussie is not very cache friendly. Normally a 2/4/6 step matrix
is extremely cache friendly but Nussie's isn't quite like that. And if
you did the symbolic transforms as a 2/4/6 step, you would still
have to do the long vectors. So there would be little benefit.

Nussie can use recursive transforms. That helps some, but
not really enough. (The best recursive transforms seem to be
ones that actually do their trig scrambled, rather than no
scrambling or scrambling the data. (Like I discussed in the DiT
section.))

http://members.tripod.com/careybloodworth/nussbaumer.htm (3 of 4) [8/21/2002 1:25:52 AM]

Nussbaumer

If you use Nussie solely as a way to break up a big
multiplication into a series of smaller ones, the performance isn't
too bad. About twice what a good FFT/NTT method would cost.
 That's because Nussie doubles the length, of course. Of course,
those symbolic transforms are still a problem, so it doesn't make a
good disk transform.

http://members.tripod.com/careybloodworth/nussbaumer.htm (4 of 4) [8/21/2002 1:25:52 AM]

SS vs. Nuss

 Home Page

 SiteMap

 Download page

 Feedback form

Symbolic

Schonhage-
Strassen
Nussbaumer

SS vs. Nuss
Schonhage

SS vs. Nuss

You are probably wondering which method is best....

Well... They both take about the same amount of storage. Twice
what a multi-prime NTT takes, but the same as a single 62 bit prime
NTT. In other words, About 4 times the number of digits.

Nussbaumer works in any base, where as Schonhage-Strassen can
only work in binary. So if you need deciaml, Nussbaumer is the only
choice.

I'd have to say that Schonhage-Strassen is a little easier to implement.
 They are both about the same level, but SS works with a standard
NTT styel, which we are already familiar with. But, Nussie works with
fixed width data which is easier.

Efficiency... Well, theoretically, they both have the same level
complexity. They both perform the same. They have supposedly
been shown to be 100% equivelent.

Practically speaking though, I'd have to say that SS would be a little
easier to implement efficiently. That's because Nussie likes to do a lot
of data copying and to get around that requires some clever code.

Cache efficiency is another question. That's a fairly complex area. SS
is a standard NTT. We can do standard things, like recursive or 2/4/6
step, etc.

Nussie requires a cache inefficient data copy / transposition at the
beginning of the transform. You can work around that if you want, but
it's going to take some effort.

Nussie is normally done as a standard NumRec style transform. In
other words slow. You can make it into a recursive transform, which
drastically improves things. But you can't take it the next step and do
a 2/4/6 step. Well, actually you can, but chunks will be larger which
hurts cache efficiency. (Where as a 2/4/6 step works with 2-D data,
since Nussie is already 2 dimensional, you actually end up with a 3-D
cube.) You *might* (and that is a big maybe!) be able to improve on
that a bit, but I'm not sure. However, if you do, you will end up with
some fairly complicated code. Since the data elements would be
large, I don't think that's a major problem, but it would definetly be

http://members.tripod.com/careybloodworth/ssvsnuss.htm (1 of 2) [8/21/2002 1:26:14 AM]

http://members.tripod.com/careybloodworth/contact_me.htm

SS vs. Nuss

dificult to code. Assuming it actually works like I think.

Because of the cache efficiency problem, I'm going to have to say that
Schonhage-Strassen is the more efficient algorithm. I don't like it,
because I normally work in decimal rather than binary, so I'd prefer
Nussie to be best, but it's not.

You can generally just avoid this whole area though, and do a 62 bit
prime, Montgomery modulo based NTT. That's a WHOLE lot easier to
implement. Theoretically the growth isn't quite as good, but it's a lot
easier to implement efficiently.

(Of course, since I wrote that, I realized that Schonhage can be done
in any base, so some of the points aren't relevant.)

http://members.tripod.com/careybloodworth/ssvsnuss.htm (2 of 2) [8/21/2002 1:26:14 AM]

Schonhage

 Home Page

 SiteMap

 Download page

 Feedback form

Symbolic

Schonhage-
Strassen
Nussbaumer
SS vs. Nuss

Schonhage

Schonhage

I'm stupid.

That's the only way I can describe why it took me so long to do this.

Back when I implemented Schonhage-Strassen I considered the
possibility that it could be done in other bases. But I dismissed the
idea because I figured that if it worked, then somebody else would
have already done it. And 'everybody' always said that Schonhage-
Strassen is only for binary numbers.

I understood how it was done. It's relation to a regular NTT is quite
obvious. But Knuth (and others) always talked about it only in binary.

But I didn't do it. Instead, I kept going back to Nussbaumer, figuring it
was the only one that could work in any base. I even started doing
some pretty complicated coding just to try and make Nussie more
cache friendly so it could actually be used.

All the while, in the back of my mind, I kept thinking that Schonhage-
Strassen seemed like it should work in any base. Maybe Knuth just
did it in binary because that's what he was interested in.

Knuth is a very "low level" person and he often gets lost in the minute
details, obscuring the 'why' with the 'what'. (Reminds me of a story I
heard. In the early days of computers, At a conference Alan Turing (I
think) got up and started to walk through a simple algorithm on the
chalk board, just as a prelude. Nobody in the audience could
understand what he was doing though. Finally it occured to somebody
that what Turing was doing was multiplying two numbers. What had
confused them was that for some reason he just happened to be doing
it backwards. He had gotten so deep into the minute details of what
he was doing that he totally confused everybody. He just implicitly
assumed that everybody did things his way and that something as
'minor' as the number format was irrelevant.)

But still, I kept thinking.... As long as the relation Root^NTTLen == -1
(mod Prime) then it should work.

Well, finally I coded it. And guess what???! It works in any base!

Afterwards, I did some further checking and noticed a couple of lines

http://members.tripod.com/careybloodworth/schonhage.htm (1 of 3) [8/21/2002 1:26:38 AM]

http://members.tripod.com/careybloodworth/contact_me.htm

Schonhage

in Bernstein's paper. He gives Schonhage: R[x]/(x^(mn)+1) ->
(R[x][y]/(y^n+1))/(x^m-y) Notice the base of the exponents.... For the
Schonhage-Strassen he gives bases of 2 and a slightly different
formula. I certainly don't pretend to fully understand Bernstein's
paper, but it's enough to say that this version does indeed work and
isn't my imagination.

There are some differences, of course.

Instead of "bits", you now work in "digits". A single "digit" can be any
base you want.

Instead of setting 'bits', you now set a digit to one.

Instead of binary shifting a number, you now shift by 'base' digits.

The multiplicative inverse (for the NTT normalization) is a little more
difficult. Previously we just raised a number to a certain power. That
only works when the modulus is a prime, though. We now have to use
an extended GCD. Those aren't too hard to code.

Or we can determine the multiplicative inverse by the rule that
multiplying by (Prime+1)/2 is the same as dividing by two. Since this
will only be Log2(NTTLen) many, we can pretty easily come up with a
way to do that special multiply.

Or we can avoid the multiplicative inverse entirely by dividing by 2 at
each butterfly during the inverse NTT. For a base 10 situation, that'd
be multiplying by 500...0001 which isn't too hard. Many people do this
kind of normalization directly in the FFT & NTT. I've always prefered
to wait,but for this case, it's simple enough you could do it without too
much effort.

The roots and such are still just single bits (in your base). You just
have to make sure your low level modular math works in that base and
things work out.

The inverse roots during the NTT are still done the same. Before, they
were 'all bits set' on the high part, followed by zeros, followed by '1'.
 Well, now they are "base-1" in the high part. The basic math still
works the same.

The scaling (if desired) still works like normal.

http://members.tripod.com/careybloodworth/schonhage.htm (2 of 3) [8/21/2002 1:26:38 AM]

Schonhage

The mini-CRT (when we release our carries) still works just fine.

You still don't need the "normaliztion" in the CRT, which checks if the
number is 'negative'. Knuth has it, but I don't think it's actually needed.

The 'any base' version is pretty much the same as the regular binary
version.

One difference, though, is that since we are now working in 'digits'
instead of 'bits', the length and width of the NTT will be different. That
will effect it's "theoretical op count", so you might want to do adjust the
sizes.

I don't have an example program for this. The 'proof of concept' code I
did was just an ugly hack of the previous SS1.C program already in
my demonstration collection.

http://members.tripod.com/careybloodworth/schonhage.htm (3 of 3) [8/21/2002 1:26:38 AM]

Cyclic vs. NegaCyclic

 Home Page

 SiteMap

 Download page

 Feedback form

Transforms

FFT Limitations
FFT Types

Cyclic vs.
NegaCyclic
FFT Styles
Background

Cyclic vs. NegaCyclic

While we are on the general subject of 'transform' style multiplication, I
need to talk to you about cyclic versus negacyclic. And why we have
to zero pad.

Cyclic means we are multiplying modulo BASE^n -1.

Negacyclic means we are multiplying modulo BASE^n +1.

Alright, I'm sure that doesn't mean anything to you. So I'll give you an
example.

Let's say we were squaring "87654321". The full answer is
7683279989971041 of course.

Let's say our 'base' was 10^8. The same size as our number.

A normal multiply would be modulo 10^8 and give the answer
89971041.

A cyclic multiply would be modulo 10^8-1 and give the answer
66803841.

A negacyclic mutliply would be modulo 10^8 +1 and give the answer
13138242

Obviously this is why we have to zero padd our number. That way we
are multiplying with a base of 10^16 instead.

Doing a cyclic multiply without zero padding is as if we had done the
full zero padded multiply but then added the low half to the high half.
 (That's how you do a base-1 modulo.)
89971041+76832799=166803840 = (wrap carry) 66803841

Doing a negacyclic multiply without zero padding is as if we had done
the full zero padded multiply but then subtracted the high half from the
low half. (That's how you do a base+1 modulo.) 89971041-
76832799=13138242

So why do you need to know this?

http://members.tripod.com/careybloodworth/nega_cyclic.htm (1 of 2) [8/21/2002 1:27:19 AM]

http://members.tripod.com/careybloodworth/contact_me.htm
http://members.tripod.com/careybloodworth/fft_background.htm

Cyclic vs. NegaCyclic

Well, you don't normally. But, I thought you might like to know why we
have to zero pad, and what kind of an answer you would get if you
didn't.

Plus, there are occasionally uses for doing a modulo already built in.
 (If you want to do more modulo's, you could do a DWT fft, like they do
in the Mersenne prime search and as described by Colin Percival.)

http://members.tripod.com/careybloodworth/nega_cyclic.htm (2 of 2) [8/21/2002 1:27:19 AM]

FFT Styles

 Home Page

 SiteMap

 Download page

 Feedback form

Transforms

FFT Limitations
FFT Types
Cyclic vs.
NegaCyclic

FFT Styles
Background

FFT Styles
DiF | DiT | Radix | Split Radix | Recursive | 2/4/6 Step | Vector | Disk | More

There are a surprising number of ways to do a Fourier style transform.
 Which is pretty fortunate since some are better suited to some uses
than others.

They all have several common features.

The first is that all of them will be either a Decimation in Freuquency
(DiF) style or a Decimation in Time (DiT) style. (The names come
from their original use in spectal analysis. For doing multiplications
the names have no meaning, so the abreviations DiF and DiT seem a
bit more appropriate.)

The DiF style does its scrambling after the transform, while a DiT does
it before the transform. (For multiplication, we often skip the
scrambling, using a DiF followed by the convolution with the
scrambled data, followed by an inverse DiT which unscrambles the
data.)

Another common feature is how they do the scrambling. The FFT
structure requires a certain amount of data movement. Some styles
leave the data alone and scramble the trig powers. Most scramble the
data and leave the math alone.

A third common feature is scaling. For a multiplication, after you've
done the inverse transform, you need to scale the result. To divide the
FFT elements by the length of the transform. You can do it directly in
the FFT as part of the butterfly. You just divide by two at every
butterfly. I've seen several that do that. Others do it after the
transform and before returning. However, many don't do that. They
just leave the data alone and let you scale the answer when use the
final output (which for multiplication is releasing our carries.) It's
easier that way.

No matter what style FFT we are using, it will always have those three
points.

There are a number of transform styles we can use with those
common features.

Most transforms you'll see are iterative. They are plain. They are

http://members.tripod.com/careybloodworth/fft_styles.htm (1 of 3) [8/21/2002 1:30:10 AM]

http://members.tripod.com/careybloodworth/contact_me.htm
http://members.tripod.com/careybloodworth/fft_background.htm
http://members.tripod.com/careybloodworth/split_radix.htm

FFT Styles

simple. These are sometimes call "Numerical Recipes" style because
of their simpleness and their poor performance on monder computers.

Most FFTs break the data into two parts (left & right for DiF and even
& odd for DiT) and then operate on the halves. These are called
"radix-2" style. Other radix transforms are possible. Higher radix
transforms do save math, but they are more complicated and the
theoretical benefits are usually lost due to the extra overhead.

The 'Split Radix' style is a cross between a Radix-2 and a Radix-4
transform. It's not extremely common, but does show up some times
with floating point transforms because the variables just happen to fit
into the registers on the x87 FPU.

Most FFTs are written in a normal 'iterative' style. However, due to the
speed of the memory in modern computers, this can be a bit slow.
 This style isn't very cache friendly. One way to improve the cache
effectiveness is to use a recursive transform. This pretty quickly
breaks the data into chunks small enough to fit into the much faster
cache memory.

Another way of breaking data into chunks is called a 2, 4, or 6 step
transform. Where as most transform styles break data into just a few
chunks, these styles usually break the data into nearly square root
number of chunks. A transform of 65,536 would be broken down to
256 seperate transforms of 256 length. This is as fast as you can
break the data.

The above methods break the data into chunks small enough to fit into
the caches, but another aspect of modern processors is they like to
have their pipelines full. This can be difficult to do with older code that
works in 'scalar' mode (ie: on a single element at a time.) It's more
efficient to do things in vectors. In other words, long seuqences of
operations. Most transforms can be re-arranged into vector form.

Nearly all transforms work best when their length is some power of
two. There are some transforms that work with non-powers of two
lengths, but they aren't very common and may not even run as fast
due to their greater complexity. If all you are wanting to do is multiply
numbers, there are better ways.

Although you can use about any style you want for an 'in memory'
transform, if you want to do a disk transform you have to take special

http://members.tripod.com/careybloodworth/fft_styles.htm (2 of 3) [8/21/2002 1:30:10 AM]

http://members.tripod.com/careybloodworth/split_radix.htm
http://members.tripod.com/careybloodworth/odd_sizes.htm

FFT Styles

care to reduce the amount of disk head movement. An old style
transform would thrash things so badly that the constant disk head
movement sound would 'drive you crazy'. It could also actually wear
out your drive if you did a big enough transform. There could be many
trillions of movements and drives just aren't designed for that kind of
use in short period of time.

There is a lot of lore about what kind of transforms are efficient and
which aren't. A lot of that lore is plain wrong. Much of it was
developed back in the 60's and 70's on mainframe computers.
 Today's desktop computers behave very differently than those old
monsters. Even a cheap desktop has far greater usable performance
than the supercomputers of the days of old. Such as the Cray-1 and
Cray-2.

In these pages, I am trying to give you good current advice, but you do
need to remember that there are no absolutes. Something that works
well on your system may not work well on mine.

A lot of the example code is just that... EXAMPLE code. I'm showing
you the basic algorithms and it's up to you to code them efficiently.

Also, I'm using regular 'complex' data type for the FFT examples. As
the FFT Types section shows, there are other data types.

http://members.tripod.com/careybloodworth/fft_styles.htm (3 of 3) [8/21/2002 1:30:10 AM]

DiF

 Home Page

 SiteMap

 Download
page

 Feedback
form

FFT Styles

DiF
DiT
Radix
Split
Radix
Recursive
2/4/6
Step
Vector
Disk
More

DiF

No matter what other style the transform is in, it will be either a DiF (Decimantion
in Frequency) or a DiT (Decimation in Time). (The terms are a little confusing,
since they are used in spectral analysis, but since we are doing multiplication it
doesn't make sense. Just call them DiF and DiT.)

The reason these two styles are so pervasive is because of the way a regular
transform is converted into a Fast transform.

At it's most basic level, a FFT is a recursive algorithm. You've only got two
choices. You can do the math and then do the sub-transforms, or you can do the
sub-transforms and then do the math.

A DiF does the 'butterflies' (ie: the math) and then splits the data into Left & Right
halves and calls itself and then recombines the data into even & odd indexing.
 By comparison, a DiT splits the data into Even & Odd parts and then calls itself
and then puts the data into left & right parts.

Frankly, the one thing that makes a FFT (either DiF or DiT) awkward is having to
do the "even & odd" scrambling.

In simple terms, (using C++ for its built in complex math), it looks like:

void RFFT_F(Cmplx *a,int n, int Dir, Cmplx *ao)
/* Recursive decimation in frequency */
{Cmplx b[MAXSIZE/2],c[MAXSIZE/2];
 int k;
 Cmplx e=exp(Cmplx(0.0,(M_PI*Dir*2.0)/(n)));

if (n==1) {*ao=*a;return;}

n/=2;
for (k=0;k<n;k++)
 {Cmplx x,y;
 x=a[k];y=a[k+n];
 a[k] = x+y;
 a[k+n]=(x-y)*pow(e,k);
 }

RFFT_F(a, n,Dir,b);
RFFT_F(a+n,n,Dir,c);

for (k=0;k<n;k++)

http://members.tripod.com/careybloodworth/dif.htm (1 of 7) [8/21/2002 1:30:17 AM]

http://members.tripod.com/careybloodworth/contact_me.htm
http://members.tripod.com/careybloodworth/contact_me.htm
http://members.tripod.com/careybloodworth/split_radix.htm
http://members.tripod.com/careybloodworth/split_radix.htm

DiF

 {
 ao[k*2] = b[k];
 ao[k*2+1]= c[k];
 }
}

This is the most basic of DiF transform. This is a direct coding of the basic FFT
formula. As you can see, though, it is pretty inefficient. There is a lot of data
copying and we have all that recursion to deal with.

What we can do though, is get rid of the scrambling. Then we are left with:

void RFFT_F(Cmplx *a,int n, int Dir)
/* Recursive decimation in frequency */
{int k;
 Cmplx e=exp(Cmplx(0.0,(M_PI*Dir*2.0)/(n)));

n/=2;
for (k=0;k<n;k++)
 {Cmplx x,y;
 x=a[k];y=a[k+n];
 a[k] = x+y;
 a[k+n]=(x-y)*pow(e,k);
 }

if (n>1) {RFFT_F(a, n,Dir);RFFT_F(a+n,n,Dir);}
}

Of course, getting rid of the scrambling means it doesn't give the right answer!
 We've got to do the scrambling somewhere. Fortunately, that's pretty easily
solved. We just do the scrambling after we get completely done with the
transform. Because of the structure of the transform it all works out okay.

The scrambling is a bit difficult to follow. Instead, I'll just say that it ends up that if
you go through the array and swap an element with its bit reversal index
counterpart, it works. In other words, in binary, if the index is 000110 you would
swap it with 011000.

void Scramble(Cmplx *data, int Len)
{int Index,xednI,k;Cmplx temp;
xednI=0;
for (Index=0;Index < Len;Index++)
 {
 if (xednI > Index)
 {

http://members.tripod.com/careybloodworth/dif.htm (2 of 7) [8/21/2002 1:30:17 AM]

DiF

 temp=data[xednI];
 data[xednI]=data[Index];
 data[Index]=temp;
 }
 k=Len/2;
 while ((k <= xednI) && (k >=1))
 {xednI-=k;k/=2;} /* bit reversal */
 xednI+=k;
 }
}

[The bit reversal part is a little hard to follow. To put it simply, it's addition.
 Where as normal addition adds one to the lowest bit and the carries ripple
upwards (like the normal incrementing of the variable 'Index'), this is an add to
the upper bits and the carries ripple downward.]

And, of course, most people will just put the call to scramble() after they've done
the transform. Since we are doing multiplications, if we use a DiF followed by a
DiT, we can skip the scrambling completely. Saves some time.

Of course, generally you don't wont see recursive transforms like this. Instead,
you'll see an iterative one. There is less overhead because we don't need to do
all that recursion.

There are a couple of different styles.

void FFT_F(Cmplx *data, int Len, int Dir)
/* non-recursive decimation in frequency */
/* Doing the inner chunks as a chunk, */
/* rather than by common power */
{int j,k,r,step,halfstep;
 Cmplx w;
 int power;

step=Len;
while (step)
 {
 halfstep=step/2;
 w=exp(Cmplx(0.0,(M_PI*Dir*(2.0))/step));

 for (r=0;r<Len;r+=step)
 {
 for (j=0;j<halfstep;j++)
 {int i1,i2;Cmplx u,v;
 i1=r+j;i2=i1+halfstep;

http://members.tripod.com/careybloodworth/dif.htm (3 of 7) [8/21/2002 1:30:17 AM]

DiF

 u=data[i1];v=data[i2];
 data[i1]= u+v;
 data[i2]=(u-v)*pow(w,j);
 Nth=Nth*w;
 }
 }
 step=halfstep;
 }
Scramble(data,Len);
}

This style is uncommon. It's pretty much a direct conversion of the recursive
form to an iterative form.

The recursive form does each subchunk completely, then goes on to the next.
 So does this one. It just starts at the beginning of the array and sequentially
does each butterfly until it's done the entire data array. It's not extremely efficient
though, because it does one trig operation for each data point.

Instead, you'll generally see something like this:

void FFT_F(Cmplx *data, int Len, int Dir)
/* non-recursive decimation in frequency */
{int j,k,r,step,halfstep;
 Cmplx w,Nth;
 int power;

step=Len;
while (step)
 {
 halfstep=step/2;

 Nth=Cmplx(1.0,0.0);
 w=exp(Cmplx(0.0,(M_PI*Dir*(2.0))/step));
 for (j=0;j<halfstep;j++)
 {
 for (r=0;r<Len;r+=step)
 {int i1,i2;Cmplx u,v;
 i1=r+j;i2=i1+halfstep;
 u=data[i1];v=data[i2];
 data[i1]= u+v;
 data[i2]=(u-v)*Nth;
 }
 Nth=Nth*w;
 }

http://members.tripod.com/careybloodworth/dif.htm (4 of 7) [8/21/2002 1:30:17 AM]

DiF

 step=halfstep;
 }
Scramble(data,Len);
}

As you can see, this is a little different.

The first difference is we are doing the trig powers differently. Before I was just
using the pow() function to raise the trig to the needed power. It's obviously
inefficient, but it was clearer and I felt that was important.

The second difference is that we are no longer doing each chunk completely.
 Instead, we are doing the N'th butterfly of each chunk as a group. This
drastically reduces the number of math operations we need to compute the same
trig values over and over and over and...

This last change is mostly just a matter of swapping the two inner loops, so they
are obviously equivalent.

There is one more kind you need to know about. It's rather uncommon, but it's
worth knowing about.

I really don't know what this style is called. It has the same iterative style as the
first iterative one I showed you above, but it does the butterfly like a DiT. It
requires a BitReversal() function in the FFT and a regular data scrambling
afterwards. It requires less trig than the other sequential iterative one, but more
than the regular iterative one.

It's sequential and the inner loop works with just a single trig value. That can be
useful when random accesses are expensive and trig generation is expensive.

Although I've seen a few older transforms like this, there isn't that much use for it.
 The other forms are better. However, while working with the Nussbaumer
convoltuion, I did actually encounter a case where a recursive form of this type
was more efficient and convenient than the other styles.

Frankly, there is very little use for a transform of this style.

int
BitRev(int Mask, int Val)
/* Bit reversal */
{
 int R = 0;

 if (Val==0) return 0;

http://members.tripod.com/careybloodworth/dif.htm (5 of 7) [8/21/2002 1:30:17 AM]

DiF

 do
 {
 R *= 2;R += (Val & 1);
 Mask /= 2;
 Val /= 2;
 }
 while (Mask > 1);

 return R;
}

void FFT_F(Cmplx *data, int Len,int Dir)
/* Simple iterative Decimation in Frequency */
/* Doing the inner chunks as a chunk, */
/* rather than by common power */
/* Does it with bitrev of the trig. */
{int ndx, halfstep, Step, r, BR, j;

 for (Step = Len; Step > 1; Step /= 2)
 {
 halfstep = Step / 2;
 for (r = 0; r < Len;r +=Step)
 {Cmplx w;
 BR = BitRev(Len,r / halfstep);
// w=exp(Cmplx(0.0,(M_PI*Dir*(2.0))/Len)*BR); //
or....

 w=Cmplx(cos(2.0*M_PI/Len*BR),Dir*sin(2.0*M_PI/Len*BR));
 for (j=0;j<halfstep;j++)
 {Cmplx DL,DR;
 ndx=r+j;
 DL=data[ndx];DR=data[ndx+halfstep]*w;
 data[ndx]=DL+DR;
 data[ndx+halfstep]=DL-DR;
 }
 }
 }
Scramble(data,Len);
}

http://members.tripod.com/careybloodworth/dif.htm (6 of 7) [8/21/2002 1:30:17 AM]

DiF

http://members.tripod.com/careybloodworth/dif.htm (7 of 7) [8/21/2002 1:30:17 AM]

DiT

 Home Page

 SiteMap

 Download
page

 Feedback
form

FFT Styles

DiF
DiT

Radix
Split
Radix
Recursive
2/4/6
Step
Vector
Disk
More

DiT

The text of the DiF section applies here, so I'll skip all that and get right to the
code.

The basic recursive Decimation in Time transform is:

void RFFT_T(Cmplx *a,int n, int Dir, Cmplx *ao)
/* Recursive decimation in time */
{Cmplx
Even[MAXSIZE/2],Odd[MAXSIZE/2],b[MAXSIZE/2],c[MAXSIZE/2];
 int k,x;
 Cmplx e=exp(Cmplx(0.0,(M_PI*Dir*2.0)/(n)));

if (n==1) {*ao=*a;return;}

n/=2;
for (x=0;x<n;x++)
 {
 Even[x]=a[x*2];
 Odd[x] =a[x*2+1];
 }

RFFT_T(Even,n,Dir,b);
RFFT_T(Odd, n,Dir,c);
for (k=0;k<n;k++)
 {
 ao[k] = b[k]+c[k]*pow(e,k);
 ao[k+n]= b[k]-c[k]*pow(e,k);
 }
}

Note the seperation into Even & Odd comes before the recursive calls and
before the butterflies. Also note the DiT multiply is being done on a single
element, where as with the DiF, it happens to the (b[k]-c[k]) part.

An example of a recursive DiT without the scrambling is:

void RFFT_T(Cmplx *a,int n, int Dir)
/* Recursive decimation in time */
{int k;
 Cmplx p=1.0;
 Cmplx e=exp(Cmplx(0.0,(M_PI*Dir*2.0)/(n)));

http://members.tripod.com/careybloodworth/dit.htm (1 of 4) [8/21/2002 1:30:31 AM]

http://members.tripod.com/careybloodworth/contact_me.htm
http://members.tripod.com/careybloodworth/contact_me.htm
http://members.tripod.com/careybloodworth/split_radix.htm
http://members.tripod.com/careybloodworth/split_radix.htm

DiT

n/=2;
if (n>1) RFFT_T(a, n,Dir);
if (n>1) RFFT_T(a+n,n,Dir);
for (k=0;k<n;k++)
 {Cmplx b,c;
 b=a[k];c=a[k+n]*p;
 a[k] = b+c;
 a[k+n]= b-c;
 p*=e;
 }
}

An example of the 'sequential iterative' version is:

void FFT_T(Cmplx *data, int Len, int Dir)
/* non-recursive decimation in time */
/* does it as sequential chunks */
{int j,k,step,halfstep;
 int index,index2;
 Cmplx temp,w;

step=1;
while (step < Len)
 {
 halfstep=step;
 step*=2;

 w=Cmplx(cos(M_PI/halfstep),Dir*sin(M_PI/halfstep));
// w=exp(Cmplx(0.0,(M_PI*Dir*(2.0))/step));
 for (j=0;j<Len;j+=step)
 {
 for (k=0;k<halfstep;k++)
 {
 index=j+k;
 index2=index+halfstep;
 temp=data[index2]*pow(w,k);
 data[index2]= data[index]-temp;
 data[index] = data[index]+temp;
 }
 }
 }
}

http://members.tripod.com/careybloodworth/dit.htm (2 of 4) [8/21/2002 1:30:31 AM]

DiT

And of course, the common iterative version:

void FFT_T(Cmplx *data, int Len, int Dir)
/* non-recursive decimation in time */
{int j,k,step,halfstep;
 int index,index2;
 Cmplx u,w,temp;

step=1;
while (step < Len)
 {
 halfstep=step;
 step*=2;

 u=Cmplx(1.0,0.0);
 w=Cmplx(cos(M_PI/halfstep),Dir*sin(M_PI/halfstep));
 for (j=0;j<halfstep;j++)
 {
 for (index=j;index<Len;index+=step)
 {
 index2=index+halfstep;
 temp=data[index2]*u;
 data[index2]= data[index]-temp;
 data[index] = data[index]+temp;
 }
 u=u*w;
 }
 }
}

Of course, the coresponding 'bitrev' version is:

void FFT_T(Cmplx *data, int Len,int Dir)
/* Simple iterative Decimation in Time */
/* Doing the inner chunks as a chunk, */
/* rather than by common power */
/* Does it with bitrev of the trig. */
{int ndx, halfstep, Step, r, BR, j;

 for (Step = 2; Step <= Len; Step *= 2)
 {
 halfstep = Step / 2;

http://members.tripod.com/careybloodworth/dit.htm (3 of 4) [8/21/2002 1:30:31 AM]

DiT

 for (r = 0; r < Len;r +=Step)
 {Cmplx w;
 BR = BitRev(Len,r / halfstep);
 w=exp(Cmplx(0.0,(M_PI*Dir*(2.0))/Len)*BR); // or...
//
 w=Cmplx(cos(2.0*M_PI/Len*BR),Dir*sin(2.0*M_PI/Len*BR));
 for (j=0;j<halfstep;j++)
 {Cmplx DL,DR;
 ndx=r+j;
 DL=data[ndx];DR=data[ndx+halfstep];
 data[ndx]=DL+DR;
 data[ndx+halfstep]=(DL-DR)*w;
 }
 }
 }
}

http://members.tripod.com/careybloodworth/dit.htm (4 of 4) [8/21/2002 1:30:31 AM]

Radix

 Home Page

 SiteMap

 Download page

 Feedback form

FFT Styles

DiF
DiT

Radix
Split Radix
Recursive
2/4/6 Step
Vector
Disk
More

Radix

So far I've shown you code where the transform was always split into
two parts. That's called a "Radix-2" transform for obvious reasons.

It's also possible to have other radices. Radix-4 and Radix-8 are
some what available, although not really common. Higher ones are
also around athough they are very rare.

One of the problems with doing higher radix transforms is they require
more overhead, more internal temporary working storage, and so on.
 By careful optimization of the code and the math, it's theoretically
quicker, but since the code is bigger and more complex, it may not run
quite as well on modern processors.

Most processors (meaning x86) just don't have enough registers to be
able to do this very efficiently. They end up storing the data into
memory which reduces the performance.

You aren't really going to see too many code examples of higher radix
transforms.

http://members.tripod.com/careybloodworth/radix.htm [8/21/2002 1:30:45 AM]

http://members.tripod.com/careybloodworth/contact_me.htm
http://members.tripod.com/careybloodworth/split_radix.htm

Recursive

 Home Page

 SiteMap

 Download page

 Feedback form

FFT Styles

DiF
DiT
Radix
Split Radix

Recursive
2/4/6 Step
Vector
Disk
More

Recursive

In the DIF and DiT sections I showed you that the FAST fourier
transform algorithm was inherently recursive and I gave you some
simple code as an example.

Well... the code I gave you was of course recursive. The very subject
this section is about.

There isn't a whole lot left to say about it except that doing a recursive
transform is a good way to break large transforms into chunks small
enough to fit into cache memory.

As you are probably already aware, modern processors have many
megabytes of slow main memory but only a small amount of fast
cache memory. Naturally it makes sense to use the cache memory as
much as possible just to reduce the amount of time you spend idly
waiting for main memory to give you the data you need.

A regular iterative transform makes random accesses to data that is
far far larger than what the cache can hold. (Random as far as the
cache is concerned.) The odds are very good that the data is not
going to be in the cache and the program is going to have to just sit
there and wait until the slow main memory cache retrieves the data. It
"thrashes" the cache.

A recursive transform is very good at improving the use of the cache.
 At improving the "cache locality" of the data. However, it does have
too much overhead. All that recursion is just a lot of processor cycles
wasted.

The solution is to recurse until you get to a size that fits fully into your
cache, and then switch to a faster iterative approach.

Just adding a line such as:

if ((sizeof(Cmplx)*Len) <= CACHE_SIZE)
 {FFT_F(Data,Len);return;} /* or FFT_T() */

to the recursive transform can be a significant improvement.

I could go on, but actually there is an even better method next. David

http://members.tripod.com/careybloodworth/recursive.htm (1 of 2) [8/21/2002 1:30:57 AM]

http://members.tripod.com/careybloodworth/contact_me.htm
http://members.tripod.com/careybloodworth/split_radix.htm
http://www.nersc.gov/~dhbailey/

Recursive

Bailey's 2/4/6 step. It's a little more difficult to understand, but it's
more flexible and has better cache locality.

http://members.tripod.com/careybloodworth/recursive.htm (2 of 2) [8/21/2002 1:30:57 AM]

http://www.nersc.gov/~dhbailey/

2/4/6 Step

 Home Page

 SiteMap

 Download page

 Feedback form

FFT Styles

DiF
DiT
Radix
Split Radix
Recursive

2/4/6 Step
Vector
Disk
More

2/4/6 Step

Dr. David Bailey is a high powered math programmer. Over the years,
he's done quite a few computations, and worked with some very high
powered super computers, including computing 29 million decimals of
pi with the very first delivered Cray-2 back in 1986. He's also the
author of the famous MPFUN fortran multiprecision math package.

(It's also worth mentioning that he has said that he's discovered flaws
in nearly every computer he's ever used. From super-computers to
desktop workstations. That's worth remembering if you do any
significant amount of computation.)

One of the common things that is done is using a FFT. Unfortunately,
he discovered that the existing transforms just weren't running as fast
as they should. They were wasting very expensive super computer
time.

His research led him to invent the 2/4/6/ step transform. A flexible
method that significantly improved the cache locality and general
performance of a FFT. Prior to him, most people were still satisified
using a fairly simple transform.

His method is rather flexible. Depending on the situation, you can do
things several ways and with several steps.

His key idea is to treat the data as a matrix. Instead of a single
dimension array, treat the data as a two dimensional array. You then
use plain, ordinary, transforms on the columns and the rows.

The use of these small transforms improves the cache locality, which
is so important in modern computers. Having to do multiple small
transforms also improves the parallelization, since it allows each
processor to work on independant chunks.

If you look at Dr. Bailey's papers, you'll see he's concerned with
general purpose transforms. (Which makes sense, since few people
do multiplication as large as we do. You'll also notice that he's a
FORTRAN coder, which means his array indexing is backwards. In
Fortran, the columns (first index) are sequential memory locations,
where as in C, it's the rows (second index) that are sequential.)

http://members.tripod.com/careybloodworth/bailey_step.htm (1 of 5) [8/21/2002 1:31:08 AM]

http://members.tripod.com/careybloodworth/contact_me.htm
http://members.tripod.com/careybloodworth/split_radix.htm
http://www.nersc.gov/~dhbailey/

2/4/6 Step

It's interesting to note that he's humble enough to admit that even
though he thought of it, it turns out that he wasn't the first. It was
presented way back in 1966 by Gentleman and Sande.

(The following will assume the data is in a matrix X*Y, with X being the
width with sequential memory accesses and Y being the height with
non-sequential accesses.)

The basic structure of his 4-step is:

Perform Y number of transforms of length X.

Scale the data

Transpose the data into a Y by X matrix.

Perform X number of transforms of length Y

His paper goes on to discuss 2 and 6 step versions. However, they
are really pretty much the same structure, except they've been
modified slightly to handle limited memory or some such.

I don't happen to have any handy example code for this style because,
actually, it's not very good. All that transposing of data takes time and
can be a little difficult to do efficiently.

See, Dr. Bailey was concerned about generating the answer in
standard FFT order. He was needing a general purpose FFT to
replace exising ones.

We don't need that. Since we are doing multiplication, we can handle
data that is out of order. And that lets us get rid of some scrambling
and we can do a DiF/DiT pair.

Here is some example code of what I mean. This is from an old
working program. It's not the most efficient, but it's all there. It's a
NTT rather than a floating point FFT, but it works the same.

ModInt Scratch[....];

void
ColumnFFTs(ModInt Buffer[], size_t len, size_t

http://members.tripod.com/careybloodworth/bailey_step.htm (2 of 5) [8/21/2002 1:31:08 AM]

2/4/6 Step

count,
 size_t stride,int Dir)
{int x,kount;

 for (kount=0;kount<count;kount++)
 {
 for (x=0;x<len;x++) Scratch[x]=Buffer[x*stride];
 GenericNTT(Scratch,len,Dir);
 for (x=0;x<len;x++) Buffer[x*stride]=Scratch[x];
 Buffer++;
 }
}

void Scale(ModInt *D,size_t Len,ModInt *Trig)
{int x;
 ModInt w;

 w=1;
 for (x=0;x<Len;x++)
{ModMul(D+x,D+x,w);ModMul(w,w,Trig);}
}

void FwdTwoStep(ModInt data[], size_t NTTLen,size_t
BufLen)
{size_t k, Width=BufLen, Height=NTTLen/BufLen;
 ModInt w,Root;

 if (NTTLen <= BufLen) {FwdNTT(data,NTTLen);return;}

 w=1;
 Root=CalcRoot(NTTLen,1);

 ColumnFFTs(data,Height,Width,Width,1);

 for (k = 0; k < Height; k++)
 {
 if (k) Scale(data+k*Width,Width,w);
 ModMul(w,w,Root);
 FwdNTT(data+k*Width,Width);
/* without bit reversal scrambling */
 }
}

void RevTwoStep(ModInt data[], size_t NTTLen,size_t
BufLen)

http://members.tripod.com/careybloodworth/bailey_step.htm (3 of 5) [8/21/2002 1:31:09 AM]

2/4/6 Step

{size_t k, Width=BufLen, Height=NTTLen/BufLen;
 ModInt w,Root;

 if (NTTLen <= BufLen) {RevNTT(data,NTTLen);return;}

 w=1;
 Root=CalcRoot(NTTLen,-1);

 for (k = 0; k < Height; k++)
 {
/* without bit reversal scrambling */
 RevNTT(data+k*Width,Width);
 if (k) Scale(data+k*Width,Width,w);
 ModMul(w,w,Root);
 }

 ColumnFFTs(data,Height,Width,Width,-1);
}

As I said, this isn't the most efficient structure. The columns should be
vectorized, etc.

Also, it's more efficient when the Height & Width are close together. In
other words, they'll be near the square root of the length of the
transform.

Something like:

Height=Pow2(Log2(Len)/2);
Width=Len/Height;

In the code above, I was using a fixed size buffer (to hold the column
data duruing the transform) and I didn't want it to overflow.

It's up to you how you want to do it. It's pretty flexible.

It's also reasonably efficient. It makes only 4 passes over the data.
 The columns require 1 read and 1 write and the rows require 1 read
and 1 write. Everything else is small chunks that fit into the cache.

If they aren't small enough to fit into the cache, well, you can always
make the above routines recursive. One level of recursion should be
enough to reduce any data size into cache sized chunks.

http://members.tripod.com/careybloodworth/bailey_step.htm (4 of 5) [8/21/2002 1:31:09 AM]

2/4/6 Step

http://members.tripod.com/careybloodworth/bailey_step.htm (5 of 5) [8/21/2002 1:31:09 AM]

Vector

 Home Page

 SiteMap

 Download page

 Feedback form

FFT Styles

DiF
DiT
Radix
Split Radix
Recursive
2/4/6 Step

Vector
Disk
More

Vector

A vector transform isn't really a specific style of transform, but a way of
programming one of the styles so that it runs well on modern
computers.

Modern computers hate doing things one at a time. They much prefer
to do a long string of similar operations on sequential memory access.
 In other words, a "vector". The normal FFT/NTT convolution during
multiplication is a 'vector' multiply.

Doing a 'vector' transform isn't really all that hard to do. The hard part
is getting into the mental attitude.

Doing a 'vector' means doing the same operation over and over. So
we need to pick a style of transform where it's easy for us to do that. If
you go over to the DiF or DiT section and look at the ones I show,
you'll notice that the very first iterative one I show says that it works
with "chunks" rather than common powers. Compare this to the
normal transform, where it does one complete butterfly on one point,
skips a large distance, does another butterfly, etc.

Well, "chunks" is what we need.

Each transform butterfly is just two parts... A multiply and an add/sub
pair. Everything else is just a matter of indexing and varying the
lengths of the chunks.

Rather than computing all those powers, we can use a small pre-
computed table. The table is generated with a coresponding
FFT/NTT, except instead of doing an actual transform, it just stores
the trig into a table.

void VectorNTT_F(ModInt *Data, size_t Len)
/* A table based, vector style Decimation in
Frequency NTT */
{
 ModInt *Left, *Right, *roots;
 size_t blocks, size;
 size_t Half=Len/2;

roots=FwdTrigTable + (MAX_TRIG_TABLE - Len);

http://members.tripod.com/careybloodworth/vector.htm (1 of 4) [8/21/2002 1:31:26 AM]

http://members.tripod.com/careybloodworth/contact_me.htm
http://members.tripod.com/careybloodworth/split_radix.htm

Vector

for (size=Len/2;size >= 1;size/=2)
 {
 blocks = Half/size;
 Left = Data;
 Right = Data + size;

 while (blocks)
 {
 VectorModButterfly(Left, Right, size);
 if (size!=1) VectorMontMul(Right, roots, size
);
 Left += 2*size;
 Right += 2*size;
 blocks--;
 }
 roots += size;
 }
}

If you examine it, you'll see that it relates pretty well to the sequential
one on the DiF page.

This is not the most efficient, but it works. For example on the small
chunk sizes, the lengths are quite small. Doing the loop overhead and
the multiple calls to the vector function take time. We could hardwire a
special vector routine to do that. It'd have less overhead.

You should be able to do a DiT style by yourself.

These do require the use of precomputed tables. It'd just be too
ineffient to keep computing the trig over and over. (Remember, the
sequential version computes a lot more trig than the more common
style FFT.)

Of course, you don't want tables that are too big, either. A decent
solution to that is to use a recursive vector transform. In this case, we
can't pre-compute the trig tables, but we can still take advantage of the
pipelines in the processor by keeping it full of vector operations.

One possible implementation is:

#define RVECT_SIZE 128
static ModInt PList[RVECT_SIZE];

void VectorRNTT_F(ModInt *Data,size_t Len)

http://members.tripod.com/careybloodworth/vector.htm (2 of 4) [8/21/2002 1:31:26 AM]

Vector

/* Recursive decimation in frequency */
{size_t k,Len2;
 ModInt *Nth, *Left, *Right;
 size_t BlockLen,x,y;
 ModInt P;

if (Len<=MAX_TRIG_TABLE)
{VectorNTT_F(Data,Len);return;}

Nth=&FwdNthRoot[Log2(Len)];
Len2=Len/2;
Left=Data;Right=Data+Len2;
P=1;

BlockLen=Min(RVECT_SIZE,MAX_TRIG_TABLE);
if (BlockLen*VECTOR_RNTT <= Len2)
 {/* Only efficient (??) if we can do at least 4 */
 for (y=0;y<BlockLen;y++)
 {PList[y]=*((ModInt*)P);ModMul(P,P,Nth);}
 for (x=0;x<Len2;x+=BlockLen)
 {
 VectorModButterfly(Left, Right, BlockLen);
 VectorModMul(Right, PList,BlockLen);
 if (x+BlockLen != Len2)
 VectorModMulC(PList, P ,BlockLen);
 Left+=BlockLen;Right+=BlockLen;
 }
 }
else
 for (k=0;k<Len2;k++)
 {
 ModAddSub(Left,Right);
 ModMul(Right,Right,P);
 Left++;Right++;
 ModMul(P,P,Nth);
 }

VectorRNTT_F(Data,Len2);
VectorRNTT_F(Data+Len2,Len2);
}

It's very much like a regular recursive transform except you do things
in chunks.

http://members.tripod.com/careybloodworth/vector.htm (3 of 4) [8/21/2002 1:31:26 AM]

Vector

Both of these code snippets are from an actual working program. So
they may not be the clearest, but hopefully you'll understand the
basics.

The coding itself is not really all that hard. As I said at the top, it's
more a matter of getting into the right mental attitude. Once you do
that, the code follows fairly easily.

Trying to convert a regular style transform into one that operates well
with vectors, etc. can be difficult. But once you realize that the
standard form isn't suitable and you start looking around for something
else, things start making a bit more sense.

http://members.tripod.com/careybloodworth/vector.htm (4 of 4) [8/21/2002 1:31:26 AM]

Disk

 Home Page

 SiteMap

 Download page

 Feedback form

FFT Styles

DiF
DiT
Radix
Split Radix
Recursive
2/4/6 Step
Vector

Disk
More

Disk

Eventually your transform will be too big to fit into memory and you'll
need to use a disk based transform. Writing a decent disk transform
isn't easy if you don't know how. Hopefully, when we get done here,
you'll know how.

The most obvious way to do it is to simply take a regular transform
and depend on virtual memory.

That has two big problems. First, virtual memory is very inefficient.
 Virtual memory is okay for the occasional access, but all forms of
virtual memory are totally unsuitable for a FFT. You'll have to manage
the disk storage yourself.

The second problem has to do with the way a regular iterative
transform works. It makes many passes over data that is widely
spaced. You can improve things a little bit, but it still ends up needing
a whole lot of disk I/O and disk head movement. That last one is
particularly important because head movements are slow. And hard
drives are just not made to handle trillions of head movements in a
short time.

The standard kind of transform would have to make a disk head seek
for every single element it read and wrote. If you tried to do a large
enough transform, it's quite possible for your hard drive to wear out
before it even got finished. If it didn't wear out, the universe would
grow old and die before you got done.

Doing a disk transform like that should be avoided!! You probably
couldn't come up with a worse kind if you tried.

So, what do we do...?

Well... That's the big question. Fortunately, after doing all this reading,
there is actually a pretty simple solution. Actually two solutions.

The first is to not do any! That's right, don't do a disk transform if you
don't need one. When I did my old v2.0 pi program, I used a multi-
prime NTT because I needed the performance, I needed the storage
savings, and because that way I didn't need to do a disk transform.
 That's only disk I/O efficient up to a point, but it is an option.

http://members.tripod.com/careybloodworth/disk.htm (1 of 7) [8/21/2002 1:31:34 AM]

http://members.tripod.com/careybloodworth/contact_me.htm
http://members.tripod.com/careybloodworth/split_radix.htm

Disk

The second method, of course, is to do the disk transform efficiently.
 Don't do any more head movements than you have to. And do as
little disk I/O as possible. (As long as we aren't asking for too much,
let's also throw in grace, good looks, charm, and money.<grin>)

Rather than just giving you the 'solution', I'd like to walk you through a
few examples. That way you'll understand why we chose the things
we did.

Let's start with the simplest idea we can think of.... A plain iterative
transform. How about the 'chunk' style that I show in the DiF & DiT
pages? After all, I did call that one "sequential", and that sounds a lot
better than the regular kind of iterative transform.

Surprisingly, that would work fairly well! Imagine that. The very first
idea, the simplest idea, that we come up with would actually work.

If we assume that 'X' is how much bigger the transform is beyond our
memory, it would cost us:

Read=x*(Log2(x)*3+2)/2
Write=x*(Log2(x)*3+2)/2
Seeks=x*(Log2(x)*6+2));

That works out to:

x=2 Read=5 Write=5 Seeks=16
x=4 Read=16 Write=16 Seeks=56
x=8 Read=44 Write=44 Seeks=160
x=16 Read=112 Write=112 Seeks=416
x=32 Read=272 Write=272 Seeks=1024
x=64 Read=640 Write=640 Seeks=2432

Remember, 'X' is how many times larger the transform is than our
memory. So "x=64" means its 64 times larger than our memory. It
also means that we did 640 times our memory size in disk reads. It
only cost us 2,432 disk seeks, though.

It's pretty obvious there is more to worry about than just the disk head
movements like I mentioned at the beginning. Sure, that's very
important, but considering the speed of the disk, it'd be nice to reduce
the total amount of disk I/O, too.

Can we do that. Yes.

http://members.tripod.com/careybloodworth/disk.htm (2 of 7) [8/21/2002 1:31:34 AM]

Disk

Remember in the recursive section I mentioned how the recursive
style broke the data into cache sized chunks. Well, we can do the
same. And with some clever code, it will reduce the amount of disk
I/O required.

Unfortunately, it wont be enough and explaing various optimizations
would be difficult, so I'm not going to waste the page space discussing
it further.

Rather than just recycling some 'in memory' transform, perhaps we
should actually use a transform designed for disk. Surely somebody
has come up with a good way to do it.

If you go over to Numerical Recipes, you'll see that section 12.6 is
titled "External storage or memory local FFTs". Sounds pretty much
like what we want.

However, like most of the code in NumRec, appearances are
deceiving. Although the method works, it was designed for 1960's era
computers that used sequential mass storage devices. In other
words, TAPE drives for storage. You know, the old, slow sequential
storage device that you see in old movies. Back then, tapes did not
hold much storage. An insignificant amount based on today's storage
abilities.

Plus, it's not an 'in-place' transform. It copies the results to a seperate
storage device. That doubles the amount of storage required.

Another problem with the code is that it's designed for general FFT
transforms and it returns the data in ordered format. In other words, it
scrambles the output like it's supposed to. We don't need that. It
doesn't hurt, but why waste the effort if we don't need it.

So how about something a little newer?

If you read David Bailey's paper on the 2/4/6 step transform, you
probably noticed that he talks about doing an external storage
transform. Although in his case, 'external' means a fast external ram
drive (using regular memory chips), rather than a slow physical disk
drive. That may seem like a minor point, but actually it's pretty
significant because his "solid state disk" doesn't have any heads, and
therefor there wasn't any disk head movements and it wouldn't wear
out. It's also a whole lot faster than the fastest hard drive of today.

http://members.tripod.com/careybloodworth/disk.htm (3 of 7) [8/21/2002 1:31:34 AM]

http://www.nr.com/

Disk

Thomas Cormen and David Nicol wrote a paper on doing transform
using regular disk systems. ****INSERT LINK**** Unfortunately, their
method is for parallel disk systems and it's a little cumbersome. It's
not a 'drop in' replacement.

A few other minor references on the net that don't have a lot to offer.

So, if those three things aren't suitable, what's left??

Well, not a lot.

Of the three, let's take another look at Bailey's stuff. At least we can
actually implement it and it's not designed for tape drives!

He shows several algorithms, but let's restate the basic 4-step: That's
the simplest and a good place to start. The data is treated as a matrix
of [x,y], with them being as close to sqrt(Len) as possible in order to
make the columns & rows as short as possible. (This reduces the op
count and gives maximum cache locality.)

FourStep

Perform 'x' transforms on data that is 'y' long.

Multiply the data by some trig

Transpose matrix from [x,y] to [y,x] indexing.

Perform 'y' transforms on data that is 'x' long.

There are two things that makes this so unsuitable for a disk
transform. The matrix transposition, and having to do so many seek
operations.

The seek operations are particularly bad. It actually results in N^2
number of seeks. Plus, it shows up in the transposition, too.

But the algorithm is so flexible that surely we can do something with
it... After all, Bailey came up with several significant modifications,
and we are smart too. Right?

Well, we can.

Doing a transposition on disk is not easy. It's not as bad as doing a

http://members.tripod.com/careybloodworth/disk.htm (4 of 7) [8/21/2002 1:31:34 AM]

Disk

'scramble' using virtual memory, but it's not easy. And it takes a whole
lot of disk head movement. It's bad enough that we flat out are going
to have to solve this problem. It's not something that we can pretend
that it doesn't exist. He devotes quite a bit of the paper to
transposition issues. I don't want to get in too deep on this yet, so let's
put it aside and go onto the next one.

The second problem was doing all the head movements to read / write
the matrix. We don't have to chose our matrix dimensions to be close
to sqrt(Len). We can actually let the width be as wide as main
memory. That drops the hieght down to a very small level. And that
means the number of seeks are also very small.

But what about the transposition. Well, oddly enough, by reducing the
height, that also helps this part! Because the height is now so small,
things are a lot easier now.

Previously, we were doing the transposition so that we could do each
transform as a group of regular FFTs.

But since the height is so small now, we can just afford to load the
data into memory, do the transforms, and then write it out.

In other words, instead of both transforms being in sequential order,
we can now do the short height stuff as columns and the other, wider
one as rows.. The height is so small we can now just load the stuff in
memory

Imagine that.

What is the disk count for this, you ask? Still assuming that 'x' is how
many times larger the transform is than memory....

Read=2*x
Write=2*x
Seeks=2*x*x+2*x

Some actual numbers are:

x=2 Read=4 Write=4 Seeks=12
x=4 Read=8 Write=8 Seeks=40
x=8 Read=16 Write=16 Seeks=144
x=16 Read=32 Write=32 Seeks=544
x=32 Read=64 Write=64 Seeks=2112
x=64 Read=128 Write=128 Seeks=8320

http://members.tripod.com/careybloodworth/disk.htm (5 of 7) [8/21/2002 1:31:34 AM]

Disk

That's not bad. By comparison, at x=64, the first method I mentioned
 required 640 times the I/O, and 2432 disk seeks.

That's not bad.

Of course, the seeks is H*H, which means it's N^2. Still though, for
the size transforms were are likely to do, that's not bad overall.

By the time you get to larger sizes, you do have a problem. But by
then you'll be having some major problems regardless.

To put this in perspective. If you multiplied 1 billion decimals (2048m
of storage) and you devoted just 32meg of memory to the
multiplication, your height would be 64 and you'd be doing just 8,320
disk seeks the whole time.

Still though, yes, I do admit that there is a point where doing the head
movements will become excessive. Perhaps at 8,192 times your
physical memory. (At 32m of phys mem, that would be a multiply of
128 billion (2^37) decimals. Pretty big! And rather unlikely on a
system with just 32m of memory available.)

There are a few additional optimizations.

Again, we can do a DiF followed by a DiT. We can do the convolution
right after the row transform in the DiF, while the data is still in
memory, and we can even do part of the inverse 4-step. Saves disk
I/O.

Sample code is basically the same as in the 2/4/6 step section, except
you change the calculation of the width & height to where the width is
fixed at memory size and the height is whatever it needs to be.

And of course, you do things in chunks from the disk. That's not really
all that hard. I'll leave that as an excersize for you. In the beginnin,
just do it all in memory using a spare memory buffer. And pretend
your physical memory is just a thousand elements. Something
managable.

The hardest part is doing the column transforms. Again, you read the
data in blocks. And then you either

Copy each column data to spare memory, do the transform

http://members.tripod.com/careybloodworth/disk.htm (6 of 7) [8/21/2002 1:31:34 AM]

Disk

and copy it back to memory

Do a vector style transform on the mini-matrix you just loaded.

There are several ways things could be done, and it's not too hard to
come up with a method that works tolerably well. (It's easier to do this
than it is to get the transposition working well.)

http://members.tripod.com/careybloodworth/disk.htm (7 of 7) [8/21/2002 1:31:34 AM]

More

 Home Page

 SiteMap

 Download page

 Feedback form

FFT Styles

DiF
DiT
Radix
Split Radix
Recursive
2/4/6 Step
Vector
Disk

More

More

For more styles, see Jorg Arndt's FFT page. Be warned it has GPL
code, though.

He's got a very wide variety of transforms, plus numerous links. He's
building one of the largest FFT sites around. (He's doing with FFT's
what I'm trying to do with multiplication.)

He also has his own 'transform' archive: FXT. A lot of code in there. A
lot of quality. A lot of effort.

However, it does have a few faults.

First, it's in C++. That doesn't help portability. True, some things are
easier in C++ (such as complex math), but a lot of the other features
get in the way of portability.

Second, it (and HFloat) apear to be written solely for Linux, so 95% of
the population can't use it! Although I've never tried compiling his
stuff, several people have repeatedly told me that it flat out will not
compile under Windows. Considering the Linux flavor of the code,
they may be right. At the very least, it would probably be correct to
say it doesn't compile easily with DJGPP or MINGW

Third, the style of his transforms is a little unusual. Both the code
structure itself, and the data layout. He's one of the very few odd
people who prefer not to use the standard layout for FFT data. Suffice
to say, that does complicate using his code!! I can't think of even one
single good reason why he deliberately did that. [disgust] It goes
against tradition and on modern processors, needing to do two widely
spaced accesses to get just one single piece of data is guaranteed to
be slow.

Fourth, his code falls under the GNU Public License (GPL). What that
means is you can't use his code unless you release your code as
GPL. If you include even ONE line of GPL'ed code in your own public
domain million line program, then your entire program has to be
released as GPL. If you want to release your code as public domain,
you can't do it.

Frankly, that kind of license is one that should be intently avoided. It's
a legal virus. It infects your own code. It infects and spread very

http://members.tripod.com/careybloodworth/morefft.htm (1 of 3) [8/21/2002 1:31:57 AM]

http://members.tripod.com/careybloodworth/contact_me.htm
http://members.tripod.com/careybloodworth/split_radix.htm
http://www.jjj.de/

More

much like a regularly biological virus or a computer virus. The linux
fanatics angrily point to Microsoft and say that you can't even use their
code. They are totally oblivious to the fact that their own behavior is
even worse. They try to create open code by FORCE. (It may even
be illegal. Nobody has ever actually tested it in court.) It's like a thief
forcing you to 'donate' your wallet to him because he's pointing a gun
at you. The GPL supporters say that you don't have to use GPL.
 That's true. Provided you are aware of the virus like nature of the
GPL code, you can make that choice. But that thief can also claim
that you chose to walk down that dark street of your own free will and
that he shouldn't be held accountable for stealing your wallet.

This one aspect of the GPL is the reason so many companies refuse
to contibute to the GPL and refuse to have any GPL code on the
premises. They are willing to use compiled programs, but many
companies refuse to allow GPL'ed code anywhere near their own stuff.
 And for good reason! Can you imagine what would happen if, say,
Microsoft accidently used 1 line of GPL code in Windows? That's
right... They'd have to make the Windows source fully available.

I talked with Joerg about this once and he was shocked to discover
this aspect of the GPL and he told me that he would immediately
change his license. Well, he hasn't. So I have to assume that he
enjoys this kind of behavior from supposedly open code. That he
does indeed approve. (I know Bruno Haible, author of CLN,
approves.)

AVOID USING ANY OF JORG's CODE!

Feel free to use it as example, but avoid using it. There's a lot of
decent algorithms in there, but as long as Joerg has that attitude, I
simply can not endorse the use of his code. He's turned all his hard
work into a "read only" library. Where you can "look but not touch".

There are other publicly available licenses that could be used. That
encourage open code without attempting to steal your own. Just right
off the top of my head, something like the BSD, MIT, or zlib/libpng
licenses would be a good place to start. Or you could even go fully
freeware, like Mikko Tomilla did with his APFloat package. There are
plenty of alternatives to the GPL virus.

You can safely follow the links on his site, of course. He hasn't yet
figured out any way to put a license on those. (Although at one time,
he did jokingly (?) have a notice on his site saying that anoyone from

http://members.tripod.com/careybloodworth/morefft.htm (2 of 3) [8/21/2002 1:31:57 AM]

More

Microsoft who used his links had to pay him...)

As I said, he's put a lot of work into his code, but as long as it is
released under the GPL virus, don't let it anywhere near your own
code.

It is worth pointing out that in spite of my distaste for his code license, I
do have to recommend you read his "FXT book" on his FXT page. It
has a lot of information on the FFT, FHT and NTT. It's excellent
reference material. A lot of information.

You might also want to check the FFTW people. Their code is also
under the GPL, so avoid using it. But you can still use the links to
other sites.

http://members.tripod.com/careybloodworth/morefft.htm (3 of 3) [8/21/2002 1:31:57 AM]

http://www.fftw.org/

SiteMap

http://members.tripod.com/careybloodworth/sitemapcontainer.htm [8/21/2002 1:33:45 AM]

http://members.tripod.com/careybloodworth/parbinsplit.htm
http://members.tripod.com/careybloodworth/binsplit.htm
http://members.tripod.com/careybloodworth/whobinsplit.htm
http://members.tripod.com/careybloodworth/schon2.htm
http://members.tripod.com/careybloodworth/bigdigit.htm
http://members.tripod.com/careybloodworth/to_do.htm
http://members.tripod.com/careybloodworth/example_nuss.htm
http://members.tripod.com/careybloodworth/whats_new.htm
http://members.tripod.com/careybloodworth/odd_sizes.htm
http://members.tripod.com/careybloodworth/fft_background.htm
http://members.tripod.com/careybloodworth/performance.htm
http://members.tripod.com/careybloodworth/split_radix.htm
http://members.tripod.com/careybloodworth/contact_me.htm
http://members.tripod.com/careybloodworth/links.htm

	tripod.com
	Carey Bloodworth
	Pi
	Downloads
	Continued fractions
	Multiplication
	Schoolboy
	Karatsuba
	Transforms
	FFT Limitations
	FFT Types
	Floating point
	Complex
	Real Value
	FHT
	Wrapper
	Right Angle
	Balanced
	FFT Math
	NTT
	Mod math
	ModMul
	33-64 bits
	Montgomery
	Big Montgomery
	Other ModMul
	Special Primes
	Wide NTT
	Multi-prime
	CRT
	Galois
	Symbolic
	Schonhage-Strassen
	Schonhage-Strassen 2
	Nussbaumer
	SS vs. Nuss
	Schonhage
	Cyclic vs. NegaCyclic
	FFT Styles
	DiF
	DiT
	Radix
	Recursive
	2/4/6 Step
	Vector
	Disk
	More
	SiteMap

